

Simulazione dei ponti termici agli elementi finiti

Workshop di simulazione con i software THERM e IRIS

CORSO ONLINE
IN DIRETTA STREAMING
16, 17 e 23 marzo 2023, orario 10.00-13.00

Evento accreditato in convenzione con:

ORDINE DEGLI ARCHITETTI PIANIFICATORI PAESAGGISTI E CONSERVATORI della Provincia di Bergamo

L'obiettivo del corso

L'esperienza di questi ultimi anni (soprattutto legata alla riqualificazione di edifici per il Bonus 110%) ha messo in evidenza che non è pensabile affrontare un intervento di efficientamento energetico di un edificio senza un'analisi approfondita dei ponti termici.

Su questo tema la normativa vigente (UNI/TS 11300, UNI EN ISO 14683 e UNI EN ISO 10211) suggerisce di eseguire un calcolo agli elementi finiti.

L'obiettivo del corso è illustrare come impostare, eseguire e analizzare la simulazione agli elementi finiti dei ponti termici attraverso due software di calcolo: THERM distribuito da LBNL (Lawrence Berkeley National Laboratory) e IRIS distribuito da ANIT (vd. pagina seguente per maggiori informazioni).

Durante le 3 giornate i partecipanti avranno l'occasione per esercitarsi assieme ai relatori su come analizzare un ponte termico ai fini della compilazione di una relazione tecnica "legge 10", di una diagnosi energetica o di un certificato energetico.

A chi si rivolge

Il corso è pensato come guida alla simulazione un nodo architettonico agli elementi finiti per valutarne il peso sotto il profilo energetico e igrotermico.

Il corso si rivolge a tutti i progettisti, termotecnici e certificatori energetici che vogliono imparare a simulare agli elementi finiti un ponte termico per l'analisi della trasmittanza lineica e del rischio di formazione di muffa.

Riconoscimenti dei crediti formativi

Di seguito una sintesi dell'accreditamento per guesto corso.

Ricordiamo che a chi segue l'intero corso verrà consegnato un attestato di partecipazione.

Ingegneri Evento accreditato dal CNI – 9 CFP

Architetti Evento accreditato dall'Ordine degli Architetti di Bergamo – 9 CFP

Geometri Evento accreditato dal Collegio Geometri di Cremona – 9 CFP

Periti Industriali Non sono previsti CFP

Corso in diretta streaming

Il corso si terrà online in diretta streaming attraverso la piattaforma GoToMeeting. I partecipanti riceveranno via email un link per accedere alla diretta. Segnaliamo che il corso non verrà registrato e non sarà registrabile dai partecipanti.

Programma

9 ore divise in tre incontri con orario 10.00-13.00 (controllo del collegamento alle 9.45)

Giorno 1 – 16 marzo 20223 – Simulazione di un ponte termico con THERM (parte 1)

9.45	 apertura della diretta, verifica del collegamento e controllo delle presenze
10.00 - 13.00	 introduzione al corso e illustrazione delle regole di interazione
	- il problema energetico e igrotermico di un ponte termico: coefficiente ψ e
	condizioni di rischio di formazione di muffa
	 guida alla costruzione dei ponti termici agli elementi finti con THERM
13.00	controllo della presenza

Giorno 2 – 17 marzo 2023 – Simulazione di un ponte termico con THERM (parte 2)

9.45	 apertura della diretta, verifica del collegamento e controllo delle presenze 	
10.00 - 13.00	esempi di simulazione di ponti termici con THERM	
	analisi critica dei risultati	
13.00	 controllo della presenza 	

Giorno 3 - 23 marzo 2023 - Simulazione di un ponte termico con IRIS

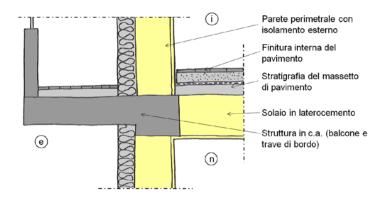
9.45	apertura della diretta, verifica del collegamento e controllo delle presenze
10.00 - 13.00	 analisi agli elementi finiti dei ponti termici finalizzata alla Legge 10 e all'APE
	esempi di simulazione di ponti termici con IRIS
13.00	controllo della presenza e test finale

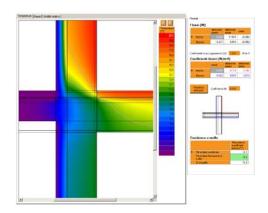
Esercitazioni con THERM e IRIS

THERM è un software gratuito distribuito da LBNL (Lawrence Berkeley National Laboratory) per la modellazione agli elementi finiti dei componenti edilizi. L'uso del software è gratuito, ma la sua complessità richiede istruzioni dettagliate per simulare correttamente un ponte termico. I relatori guideranno i corsisti all'uso del software attraverso diverse esercitazioni in aula.

Il software è scaricabile dal sito: https://windows.lbl.gov/tools/therm/software-download

IRIS è il software distribuito ai Soci ANIT (120€+IVA/anno) per l'analisi agli elementi finiti dei ponti termici basato sulla norma UNI EN 10211. IRIS può essere utilizzato per:


- l'analisi agli elementi finiti della trasmittanza lineare (coefficiente ψ)
- la verifica del rischio di muffa e condensa sulla superficie interna del ponte termico
- il calcolo della potenza dispersa attraverso il nodo e del coefficiente di accoppiamento L2d


Per maggiori informazioni: https://www.anit.it/iris/

Esempio di analisi agli elementi finiti:

Ponte termico balcone-facciata-solaio: dallo schema architettonico si studiano i piani di taglio e le condizioni al contorno per costruire il modello della simulazione agli elementi finiti. L'obiettivo è la verifica della distribuzione delle temperature e dei flussi per calcolare il rischio di formazione di muffa e i coefficienti di trasmittanza lineica ψ (di seguito un esempio tratto dal manuale di IRIS).

Relatori

Ing. Massimiliano Busnelli

Libero professionista, esperto di fisica degli edifici. Professore al Master Abita dell'Università degli Studi di Firenze per il modulo di simulazione dinamica del sistema edificio-impianto. Consulente per diversi studi di architettura e ingegneria per simulazioni numeriche e monitoraggi strumentali.

Ing. Gaia Piovan

Ingegnere edile, staff tecnico ANIT. Lavora per TEP srl società di ingegneria specializzata nella consulenza per l'efficienza energetica e l'isolamento acustico degli edifici. Si occupa di analisi energetica degli edifici finalizzata al Bonus 110%, e contribuisce al supporto tecnico per i soci individuali ANIT.

Quota di partecipazione

Quota standard: 160€+ IVA Quota scontata*: 130€+ IVA

* la quota scontata è riservata ai Soci ANIT, agli iscritti al Collegio dei Geometri della Provincia di Cremona e agli iscritti all'Ordine degli Architetti della Provincia di Bergamo.

Incluso nella quota

Ai partecipanti verrà distribuito:

presentazioni dei relatori in formato .pdf

Come iscriversi

Per iscriversi è necessario compilare il form di registrazione dalla pagina corsi del sito www.anit.it. I corsi vengono attivati solo al raggiungimento del numero minimo di partecipanti.

La registrazione è gratuita e consente agli organizzatori di monitorare l'interesse per ogni iniziativa e in caso di attivazione (o annullamento) di informare tutti coloro che si sono prenotati. Attenzione:

- non effettuare pagamenti prima di avere ricevuto conferma da parte della nostra segreteria;
- non sono previsti rimborsi in caso di disdetta a pagamento avvenuto.

Maggiori informazioni

È possibile contattarci per telefono al numero 02-89415126 o via email all'indirizzo corsi@anit.it

