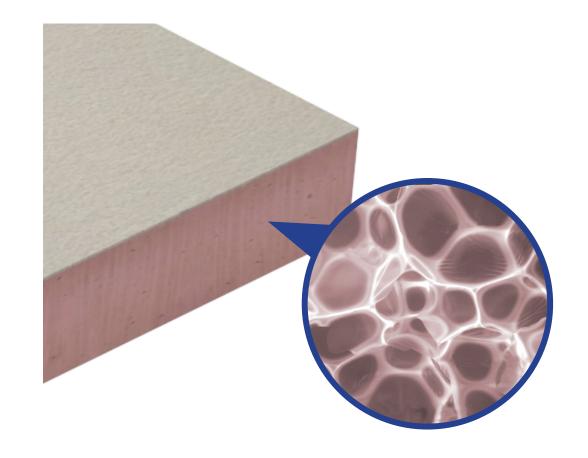


Importanza dell'efficienza termica dell'involucro nell'attuale contesto energetico e climatico


Ing. Roberto Faina – Resine Isolanti O.Diena Srl

- Divisione **PIPING INSULATION** con produzione in blocchi, dedicata all'isolamento industriale.
- Divisione **BUILDING INSULATION** con produzione in lastre, dedicata all'isolamento residenziale.

Cosa produciamo

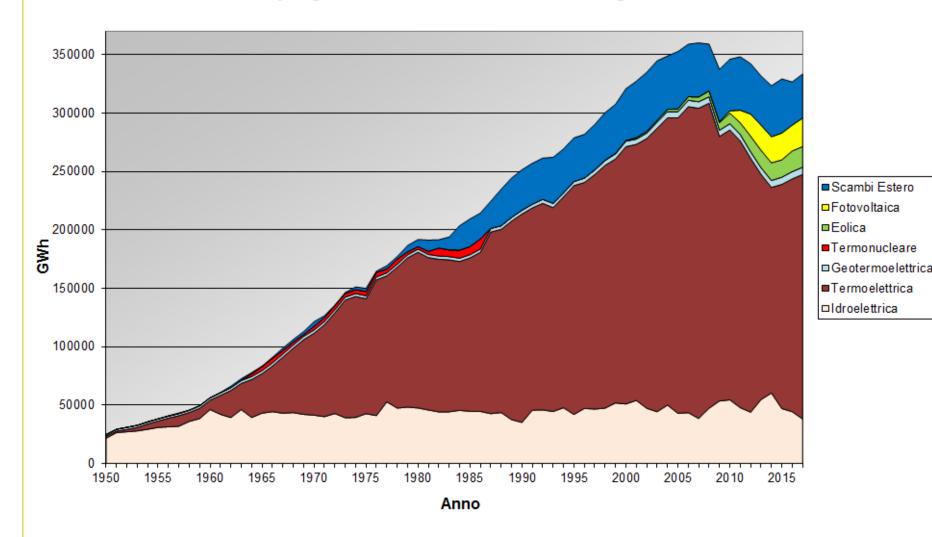
Il pannello in resina fenolica è un termoindurente chimicoorganico, a celle chiuse, coese e fini, che garantisce elevate prestazioni in termini di isolamento termico.

Transizione elettrica – Quanta energia ci occorrerà?

Consumo elettrico attuale annuo del sistema Italia 301 Terawattora (TWh)

Cosa succede se andiamo a sommarci i **consumi del riscaldamento** (oggi a gas) **e delle automobili** (oggi a distillati petroliferi)?

- Attuali consumi gas = 76 Mrd m³
- 35% per riscaldamento
 domestico = 93 TWh (assumendo un COP medio di 3)
- Consumi trasporti = 39,5 Mtep
- Assumendo 65% per trasporti
 privati = 60 TWh (con rendimento dei MCI al 20%)

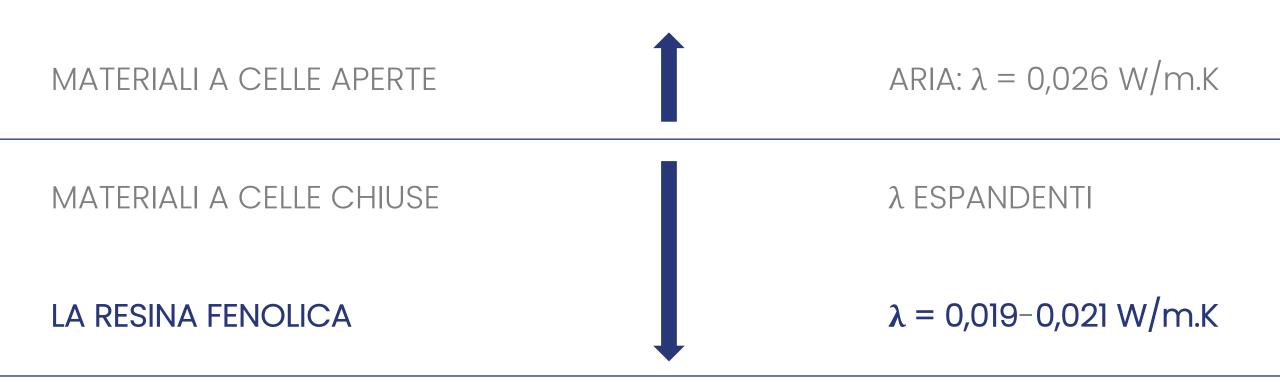

In totale, agli attuali 301 TWh, si dovranno **aggiungere ulteriori 153 TWh**

Le fonti della produzione elettrica in Italia

In passato si parlava di costruire 4 centrali nucleari da 1,6 GW l'una, si possono produrre 44 TWh l'anno.

Il costo totale era di circa €40 Mrd, per produrre 44 TWh l'anno di energia elettrica per 40 anni.

Riepilogo Storico della Produzione di Energia in Italia



Differenza tra materiali conduttori e isolanti

Grafite 1950 W/m.K	conduttori
Vetro 1,4 W/m.K	non conduttori
	Diamante 2300 W/m.K Grafite 1950 W/m.K Alluminio 200 W/m.K Ghiaccio 1,8 W/m.K Vetro 1,4 W/m.K Legno 0,15 W/m.K

espansi • Resina Fenolica 0,019-0,021 W/m.K isolanti

Le famiglie di isolanti

EN 13166 – La norma armonizzata per il fenolico

NORMA EUROPEA	Isolanti termici per edilizia - Prodotti di resine fenoliche espanse (PF) ottenuti in fabbrica - Specificazione	UNI EN 13166
		SETTEMBRE 2016

- Pubblicazione del riferimento: il riferimento della norma armonizzata (EN 13166) fu pubblicato sulla Gazzetta Ufficiale delle Comunità Europee nel 2001;
- Recepimento a livello nazionale: la norma armonizzata fu recepita a livello nazionale. Negli ultimi 20 anni successive revisioni ed aggiornamenti sono stati pubblicati, l'ultimo attualmente in vigore risale al 2016.

Pannelli in resina fenolica - caratteristiche

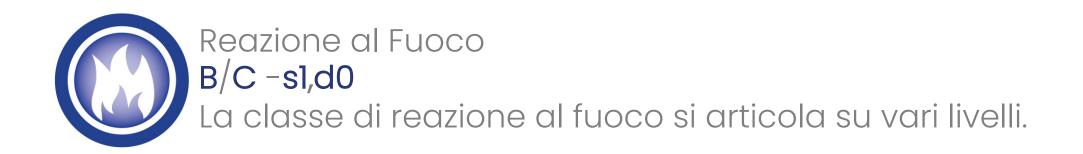
 $\lambda = 0.019-0.021 \text{ W/m.K}$ (a $T_m = 10^{\circ}\text{C}$)

Resistenza meccanica CS(150 kPa) – TR(80 kPa)

Euroclasse di RtF B/C -s1,d0

Stabilità dimensionale DS[70,90] – DS[-20,-]

Resistenza all'umidità > 95% celle chiuse



Range operativo -50°C / +120°C

Il lato pratico di una bassa conducibilità termica

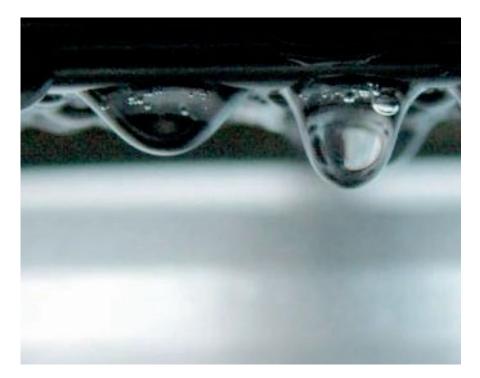
Una reazione al fuoco che garantisce sicurezza

		Classificati	ndard EN 13501-1			
Definition		Construction	Floorings			
		A1			A	1,
non-combustile materials	A2 - s1 d0 A2 - s2 d0 A2 - s3 d0	A2-s1 A2-s2 A2-s3	d1	A2 - s1 d2 A2 - s2 d2 A2 - s3 d2	A2 ₈ -s1	A2 _H - s2
combustible materials very limited contribution to fire	B - s1 d0 B - s2 d0 B - s3 d0	B - s1 o B - s2 o B - s3 o	d1	B - s1 d2 B - s2 d2 B - s3 d2	B _R - s1	B ₈ - s2
combustible materials limited contribution to fire	C-s1 d0 C-s2 d0 C-s3 d0	C-s1 C-s2 C-s3	d1	C - s1 d2 C - s2 d2 C - s3 d2	C ₁₁ -s1	C _n -s1
combustible materials - medium contribution to fire	D-s1 d0 D-s1 d1 D-s2 d0 D-s2 d1 D-s3 d0 D-s3 d1		d1	D - s1 d2 D - s2 d2 D - s3 d2	D _H - s1	D _n - s1
combustible materials - highly contribution to fire	E E-d2			E _n		
combustible materials - easily flammable	F				F	

Additional class			Level definition
		1	quantity/speed of emission absent or weak
smoke emission during combustion	s	2	quantity/speed of emission of average intensity
		3	quantity/speed of emission of high intensity
production of	d	0	no dripping
flaming droplets/particles		1	slow dripping
during combusions		2	high dripping

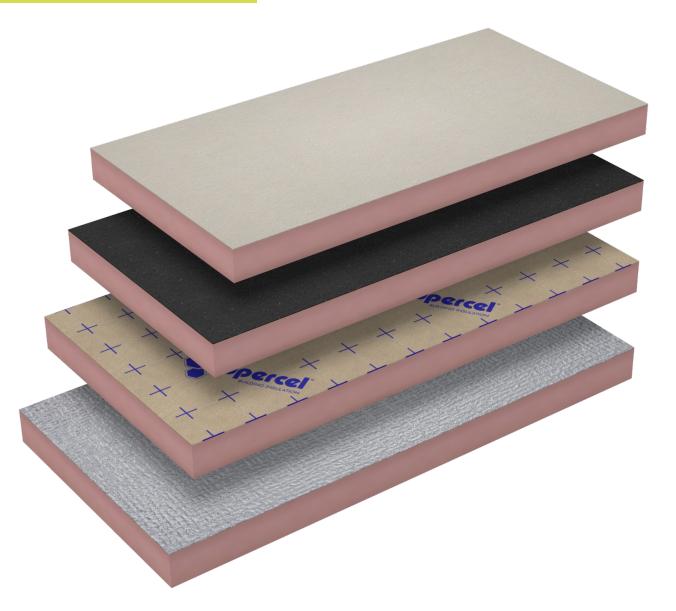
Non solo la propagazione delle fiamme

Il sistema di classificazione Europeo privilegia la valutazione del rilascio di calore in funzione del tempo, mentre relega a parametri accessori il gocciolamento e la produzione di fumo.


In molte specifiche dei paesi anglosassoni si richiede full compliance con la **ASTM E84** – classe A (25/50)

<u></u>	
Euroclass	Contribution to fire
A1	Non Combustible
A2	Limited Combustible No Flashover
В	No Flashover
С	Flashover after 10 minutes
D	Flashover before 10 minutes
E	Flashover before 2 minutes
F	No Performance Determined

L'importanza di regolare gli scambi gassosi


Con una permeabilità al vapore acqueo pari a **50 µ** i **pannelli in resina fenolica** frenano il vapore acqueo 50 volte più di uno strato d'aria equivalente.

Permettendo di regolare gli scambi gassosi, e conseguentemente impedendo fenomeni di condensa che generare muffe.

La gamma di pannelli isolanti in resina fenolica

Rivestimenti multifunzionali in base alle esigenze di progetto.

Case History – Locale commerciale a Monza

Problemi di umidità di risalita

Isolamento interno per non alterare la facciata.

Usato pannello **ALUMEN** con barriera vapore integrata.

Case History – Hotel di Parma

Status ante lavori

Isolamento a cappotto con pannello VITRUM in resina fenolica a lambda 0,019 W/m.K

- 12 cm sulla facciata a vista (circa 65% superficie totale)
- 10 cm interventi su ponti termici (circa 15%)
- 6 cm imbotti finestre (circa 20 %)

Case History – Plesso residenziale ad Anderlecht, Belgio

Isolamento in facciata ventilata con pannello FLAMMA in resina fenolica spessore 16 cm a lambda 0,019 W/m.K

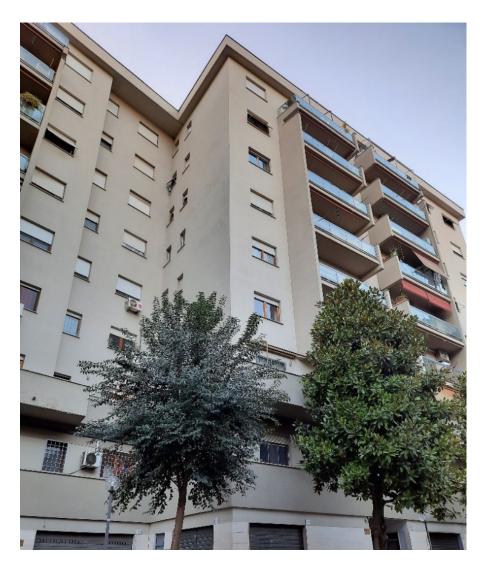
Ma quanto dura un intervento di isolamento termico?

- A livello europeo e nei gruppi di lavoro si stanno valutando metodi di invecchiamento accelerati per garantire prestazioni fino a 50 anni.
- Ad oggi, l'invecchiamento accelerato della conducibilità termica secondo EN ISO 12667, a 110 °C x 14 gg = **25 anni**.
- Quindi il cappotto progettato oggi avrà impatto sull'utilizzo dell'immobile sicuramente per 25 anni, ma anche per 50 anni, cioè fino al 2070.
- Il cappotto fatto oggi deve quindi tener conto della rapida evoluzione energetica che avverrà non solo nel prossimo decennio (50% riduzione CO2 al 2030), ma anche confrontarsi con la eliminazione totale dei combustibili fossili, che sicuramente avverrà nei prossimi 50 anni.

Interventi di riqualificazione, l'evoluzione delle trasmittanze

I requisiti di legge (sempre obbligatori) e quelli per accedere alle detrazioni:

LEGGE – Bisogna sempre rispettare i requisiti di trasmittanza previsti nel DM 26/06/2015 tenendo conto di tutti i ponti termici.


DETRAZIONI – Se si vuole accedere alle detrazioni allora bisogna verificare i requisiti previsti nell'allegato E del Decreto 6/10/2020 che non prevedono di valutare i ponti termici.

Trasmittanze per strutture verticali opache

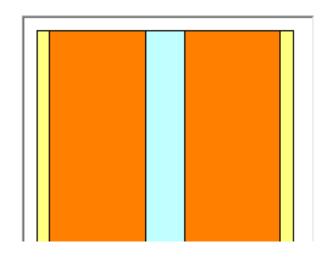
ZONA CLIMATICA	DM 26/6/2015 U = W/m ² .K	Allegato E 06/08/2020
A-B	0,43	0,38
С	0,34	0,30
D	0,29	0,26
E	0,26	0,23
F	0,24	0,22

Le due cose sono diverse e tutte e due da verificare.

Case Study – Intervento di riqualificazione

Palazzina degli anni '80 da efficientare:

- 27 appartamenti per stecca su 9 piani
- 5 stecche per gruppo
- 3 gruppi a palazzo
- Classe di partenza G / l'interpiano in E

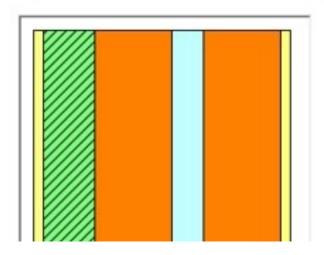

Confrontiamo vari spessori di isolamento

Trasmittanza parete in sezione corrente

		Tipo	Descrizione	Spessore [m]	Densità [kg/m³]	Conduttiviti [W/m K]	Calore specifico [J/kg K]	Fattore resistenza vapore	Massa superficiale [kg/m²]	Resistenza [m²K/W]	Spessore equivalents aria[m]	Diffusività [m²/Ms]
D			Superficie interna							0,040		
	1	INT	Malta di cemento	0,020	2000	1,400	1000	38	40,0	0,014	0,760	0,700
	2	MUR	Struttura in mattoni forati 8x25x25cm rif 1.1.19 - sp.parete 8cm	0,150	775	0.400	1000	10	116,3	0,375	1,500	0,516
	3	INA	Camera non ventilata	0,060	1	0,327	1004	1	0,1	0,183	0,060	0,000
	4	MUR	Struttura in mattoni forati 8x25x25cm rif 1.1.19 - sp.parete 8cm	0,150	775	0,400	1000	10	116,3	0,375	1,500	0,516
	5	INT	Malta di cemento	0,020	2000	1,400	1000	38	40,0	0,014	0,760	0,700
			Superficie intema							0,130		

Pavimento	Þ
no ∨	_

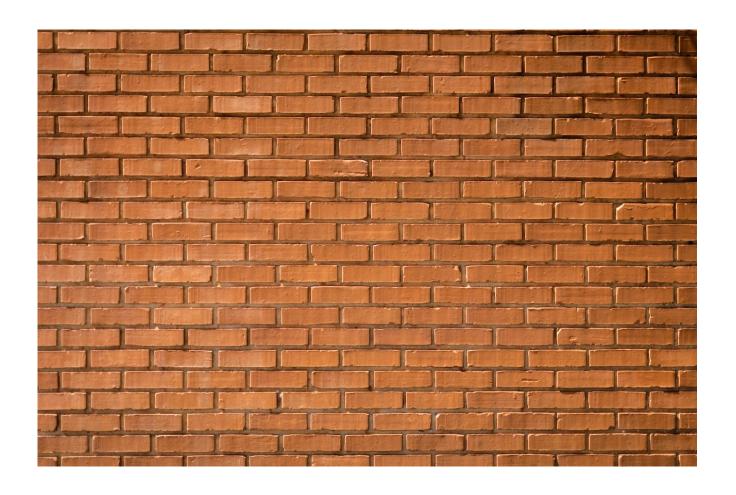
	Risultati
Spessore [m]	0,400
Massa superficiale [kg/m²]	312,56
Resistenza [m²K/W]	1,13
Trasmittanza [W/m²K]	0,884
Capacità termica interna [kJ/m²K]	61,88
Capacità termica esterna [kJ/m²K]	85,65
	Massa superficiale [kg/m²] Resistenza [m²K/W] Trasmittanza [W/m²K] Capacità termica interna [kJ/m²K] Capacità termica



Trasmittanza 0,884 W/m².K

Isolamento parete con 100mm di pannello VITRUM in resina fenolica

	Tipo	Descrizione	Spessore [m]	Densità [kg/m³]	Conduttivit. [W/m K]	Calore specifico [J/kg K]	Fattore resistenza vapore	Massa superficiale [kg/m²]	Resistenza [mªK/W]	Spessore equivalents aria[m]	Diffusività [m²/Ms]
D		Superficie esterna							0,040		
1	INT	Malta di cemento	0.020	2000	1,400	1000	38	40.0	0.014	0.760	0.700
2	ISO	pannello Supercel Vitrum a base di resina fenolica	0,100	40	0,019	1750	50	4,0	5,263	5,000	0,271
3	MUR	Struttura in mattoni forati 8x25x25cm rif 1.1.19 - sp.parete 8cm	0,150	775	0,400	1000	10	116,3	0,375	1,500	0,516
4	INA	Camera non ventilata	0.060	1	0,327	1004	1	0,1	0,183	0,060	0,000
5	MUR	Struttura in mattoni forati 8x25x25cm rif 1.1.19 - sp.parete 8cm	0.150	775	0.400	1000	10	116,3	0,375	1,500	0,516
6	INT	Malta di cemento	0,020	2000	1,400	1000	38	40.0	0.014	0.760	0.700


O Pavimento			Risultati
O Pavillerito	D	Spessore [m]	0.500
no V		Massa superficiale [kg/m²]	316,56
		Resistenza [m²K/W]	6,40
		Trasmittanza [W/m²K]	0,156
		Capacità termica interna [kJ/m²K]	60,25
		Capacità termica esterna [kJ/m²K]	86,85

La trasmittanza scende a 0,156 W/m².K valore inferiore a quello richiesto

Comparazione spessori per ottenere Trasmittanza a 0.156 W/m².K

Esempio ipotetico: Laterizio da costruzione con λ=0,40 W/m.K Trasmittanza = 0,156 W/m².K Spessore necessario 2105mm

Trasmittanza in sezione corrente

Muratura in foratini da 25x25 spessore 80mm con intercapedine d'aria non ventilata da 60mm.

Spessore pannelli isolanti in resina fenolica [mm]	Trasmittanza [W/m².K]	Limiti di legge
Nessun isolante	0,844	
	0,29	Dec. Requisiti Minimi (26/06/2015)
	0,26	All. E Dec. Del 05/10/2020
60	0,251	
80	0,187	
100	0,156	

Valutazione impatto economico

Confronto tra l'impiego di un **pannello in resina fenolica da 60mm** con cui raggiungo i requisiti di legge, e uno da **100mm** con cui li supero.

- Numero di edifici residenziali in Italia :
 12.187.698
- Superficie media di isolante 200m²
- Delta costo fenolica fra 60mm e 100mm (31,29 vs. 50,29) = 19,00 €/m²
- Maggior costo = 46.313.252.400 €

- Eph con isolamento 60mm = 10,86 kWh/m² anno
- Eph con isolamento 100mm = 8,33 kWh/m² anno
- Delta Eph = $2,53 \text{ kWh/m}^2 \text{ anno}$
- Superficie media 100 m² = 253 kWh/anno X nr. di edifici (12.187.698) = 31 TWh risparmiati

Alternativa: **4 centrali nucleari** per produrre **44 TWh anno**, al costo di ca. **40 Mrd** €

In poche parole

Come detto dall'ENEA all'8° Rapporto Annuale sull'efficienza energetica presentato alla Camera dei Deputati il 05/07/2019:

«L'energia più verde che c'è è l'energia che non si produce e non si consuma.»

In conclusione

- Il cappotto è un investimento migliorativo dell'involucro da cui ci si aspetta una durata lunga nel tempo.
- La strada della eliminazione dei combustibili fossili è stata intrapresa ed il suo percorso sarà irreversibile.
- La transizione elettrica, sostituendo combustibili fossili, sarà possibile, nell'ottica di una edilizia sostenibile, a patto che vengano prima usati tutti gli accorgimenti per minimizzare la domanda di energia.
- Dobbiamo quindi massimizzare l'efficienza involucro, per abbassare il più possibile l'Eph.

In conclusione – parte 2

- Per abbassare sensibilmente l'Eph, è necessario l'impiego di spessori di materiali isolanti tradizionali pari ai 200 mm oppure ricorrere a materiali performanti (es. resine fenoliche a λ 0,019 W/m.K).
- La riduzione del consumo di energia migliora le condizioni di vivibilità interne ed è un primo passo per l'eliminazione dei combustibili fossili.
- Un involucro a bassissimo consumo sarà comunque conveniente sotto qualsivoglia analisi di sostenibilità, che sia ambientale, oppure economica (consumi invernali/estivi) o di valorizzazione dello stesso edificio (a parte il fatto che potrebbe essere obbligatorio in base alle decisioni della Commissione Europea di Marzo).

CONTATTI

Ing. Roberto Faina

Email: info@resineisolanti.com

Tel: 0382.81.59.79

Grazie per l'attenzione