

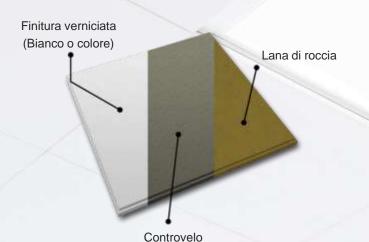
Sistemi a soffitto e parete per il comfort acustico interno

Ing. Laura Giorgia Sorano- Rockfon

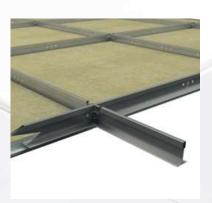
Rockfon

Rockfon è l'azienda leader mondiale nella realizzazione di controsoffitti acustici in lana di roccia

PANNELLI


La nostra vasta gamma di pannelli in lana di roccia soddisfa ogni esigenza di riduzione del rumore, garantendo allo stesso tempo ambienti belli ed eleganti, oltre che un clima interno confortevole.

STRUTTURE


Le nostre strutture di sospensione mantengono in posizione i pannelli del controsoffitto e ne semplificano l'installazione. Esse sono resistenti e possono essere modificate con accessori per creare la soluzione ideale per ogni controsoffitto.

SISTEMI

I sistemi Rockfon uniscono le qualità naturali dei pannelli in lana di roccia con le prestazioni delle strutture di sospensione Chicago Metallic, dando vita a sistemi di controsoffitti che permettono un controllo acustico completo.

Controsoffitti Modulari Controsoffitti Monolitici Isole e Baffles Pannelli Murali

Strutture di sospensione
Profili perimetrali
Finiture perimetrali e profili di transizioni
Accessori

Pannello + Struttura

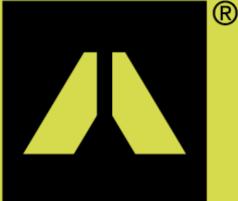
Rockfon

I nostri pannelli da controsoffitto sono completamente riciclabili

La lana di roccia non contiene alcun elemento nutritivo e non favorisce lo sviluppo di microrganismi

ISOLAMENTO TERMICO

Risparmia energia mantenendo in condizioni ottimali la temperatura interna


0,035 - 0,037 W/mK

Blocca, assorbe o migliora i suoni

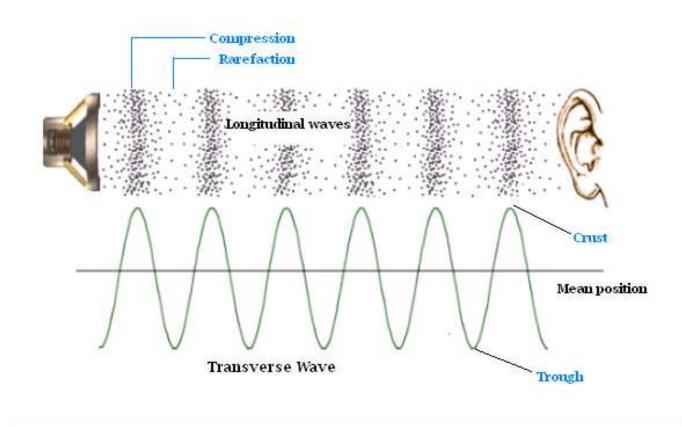
 $\alpha_{\rm w} = 1$

Resistenza alla polvere e alle ···· manipolazioni ·····

ISOLAMENTO ACUSTICO

Ostacola la propagazione del suono da un ambiente a un altro

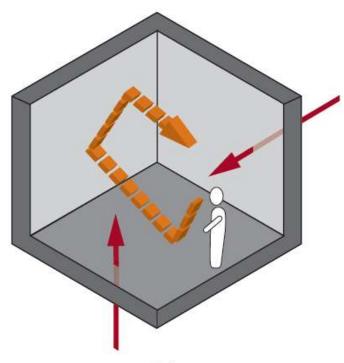
RESILIENZA AL FUOCO


Resiste a temperature oltre i 1000°C **A1**

RIFLESSIONE DELLA LUCE

La giusta combinazione di elevata riflessione e buona diffusione della luce aiuta a ridurre i costi dell'elettricità.

Introduzione all'acustica

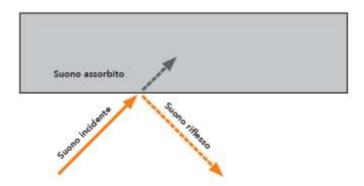

L'**onda sonora** è una perturbazione che propagandosi nel mezzo (aria) veicola energia.

Mean position

Differenza tra assorbimento e isolamento acustico

L'acustica di un ambiente è determinata da due fattori principali:

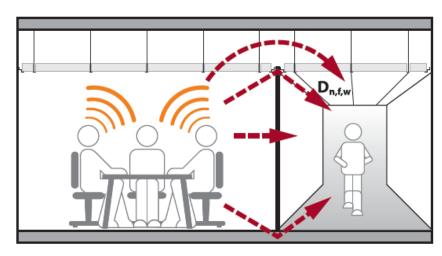
- Assorbimento acustico: come si comporta il suono in una stanza;
- Isolamento acustico: in che misura il suono si propaga da un ambiente all'altro.



Comportamento del suono in una stanza

Assorbimento acustico

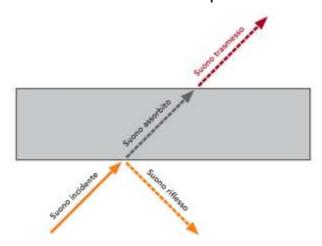
Quando un'onda sonora colpisce una superficie, una parte dell'energia viene riflessa e ritrasmessa, mentre una parte viene assorbita dai materiali presenti.

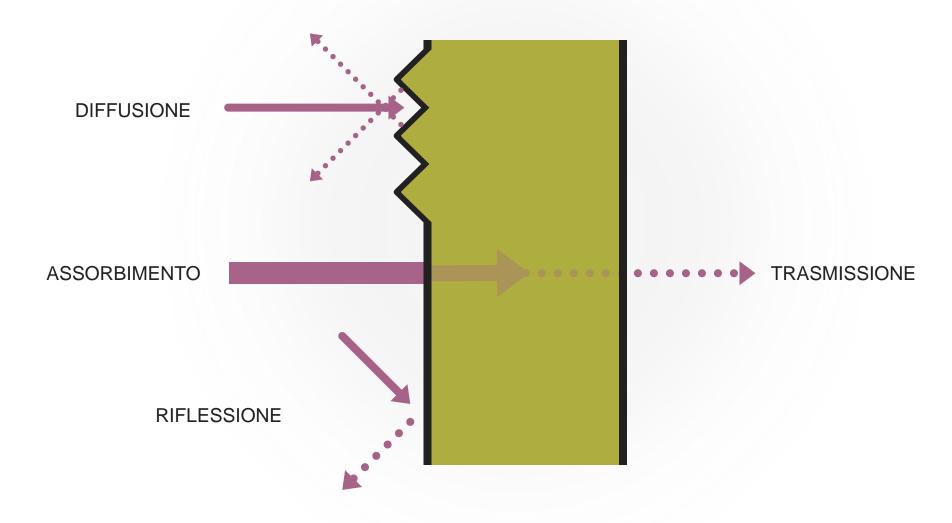

- L'assorbimento acustico è in grado di tenere sotto controllo il livello di pressione sonora di qualsiasi ambiente per creare spazi confortevoli in cui potersi concentrare e in cui lavorare in maniera produttiva, senza i fastidi o lo stress causati dal rumore;
- Aumenta l'intelligibilità del parlato rendendo le conversazioni più facili da comprendere e udire;
- Riduce il riverbero (eco) e l'effetto "cocktail party", cioè l'aumento incontrollato dei livelli sonori di un ambiente che si verifica quando le persone devono parlare a voce sempre più alta per riuscire a farsi sentire.

Differenza tra assorbimento e isolamento acustico

L'acustica di un ambiente è determinata da due fattori principali:

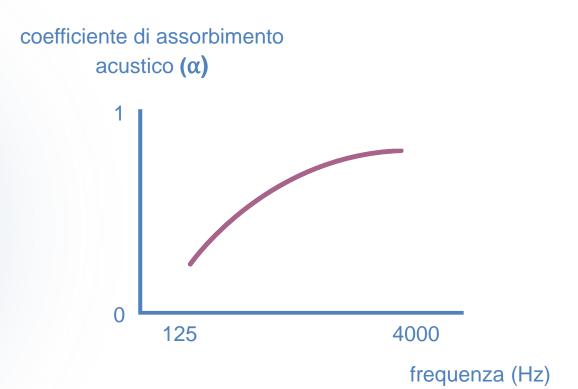
- Assorbimento acustico: come si comporta il suono in una stanza;
- Isolamento acustico: in che misura il suono si propaga da un ambiente all'altro.

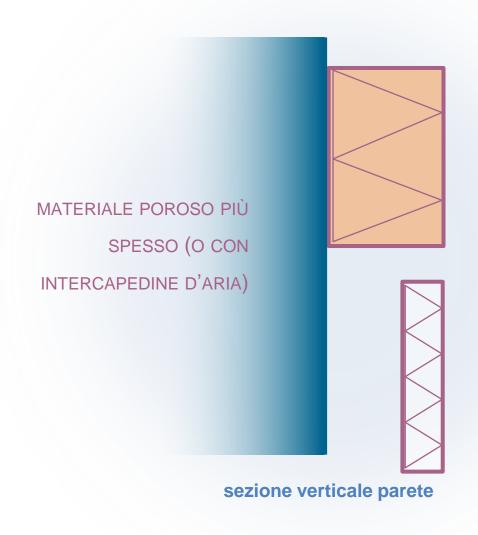

Trasferimento del suono da una stanza all'altra

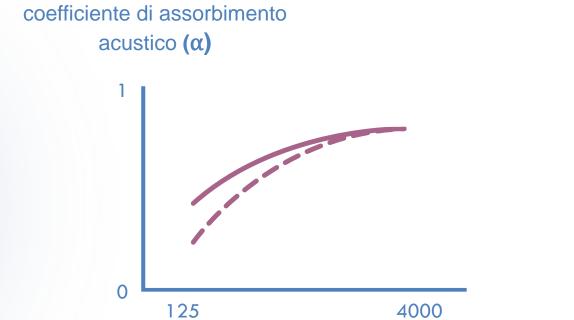

Isolamento acustico

L'isolamento acustico è il grado con cui viene ostacolata la propagazione del suono da un ambiente a un altro.

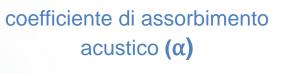
Incide sui livelli del suono dell'ambiente ricevente:

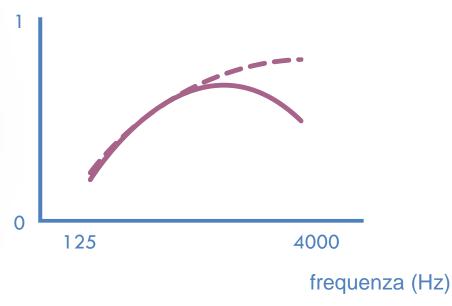

- Tutti i soffitti e tutte le pareti limitano in qualche misura la propagazione del suono tra i vari ambienti;
- Tuttavia, l'uso di elementi costruttivi dalle proprietà fonoisolanti superiori consente di ottenere un livello maggiore di privacy e riservatezza;
- L'isolamento acustico contribuisce ad abbassare i livelli di pressione sonora in ambienti adiacenti, creando spazi più confortevoli in cui sia più facile concentrarsi.



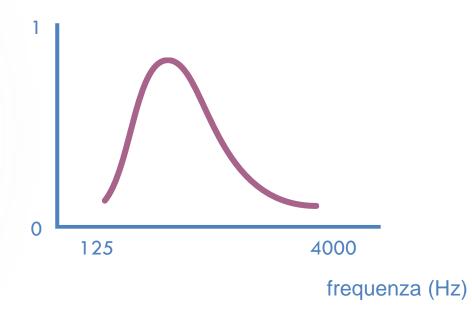


SEZIONE VERTICALE PARETE





frequenza (Hz)



Descrittori acustici

Tempo di riverberazione

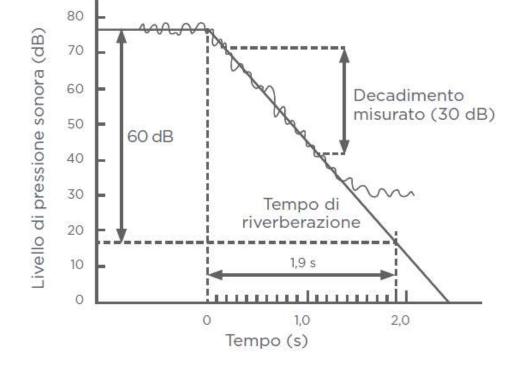
Nella pratica non sempre è possibile ricavare un decadimento del livello di pressione sonora di 60 dB a seguito dello spegnimento della sorgente sonora.

Ciò può accadere per questioni ambientali, come il rumore di fondo presente, o per questioni strumentali, per cui le sorgenti utilizzate hanno limitazioni intrinseche e non possono generare la potenza necessaria.

Per questo si ricorre alla misura di decadimenti inferiori, di 20 dB o 30 dB, al fine di identificare i T_{20} o T_{30} le cui pendenze di decadimento vengono estrapolate ai 60 dB.

In particolare, secondo la norma UNI EN ISO 3382:

- il tempo di riverberazione T₃₀ viene estrapolato dalla pendenza del tratto di decadimento di 30 dB a partire da -5 dB sino a -35 dB rispetto al livello stazionario di partenza
- il tempo di riverberazione T₂₀ viene estrapolato dalla pendenza del tratto di decadimento di 20 dB a partire da -5 dB sino a -25 dB rispetto al livello stazionario di partenza.

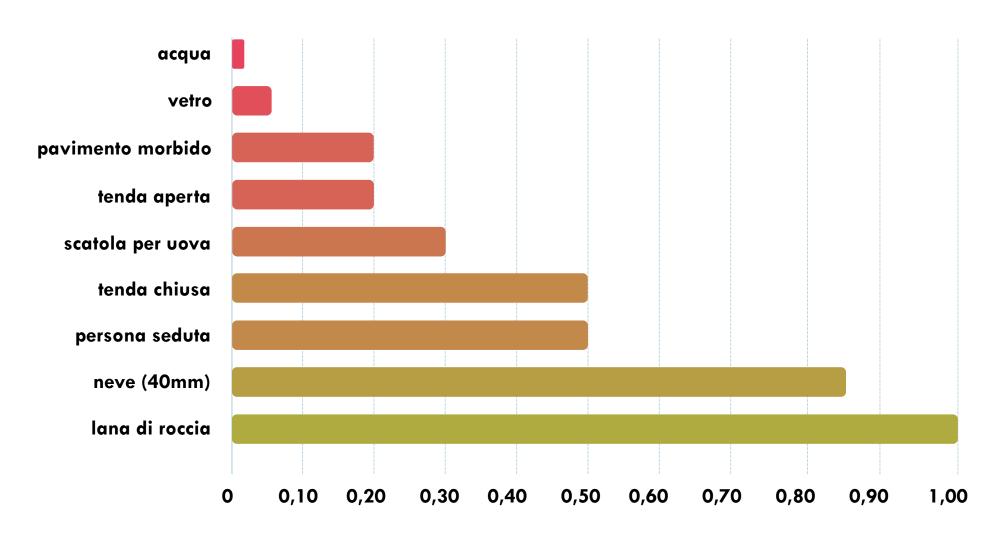

 $A = \sum a_i S_i = a_m S$

$$T_{60} = 0.16 \frac{V}{A}$$

Dove

V è il volume dell'ambiente (m³)

A l'area di assorbimento equivalente (m²)


Decadimento del livello sonoro e tempo di riverberazione T30

a_m è il valor medio del coefficiente di assorbimento acustico delle superfici che delimitano l'ambiente
 S è l'area totale di tali superfici

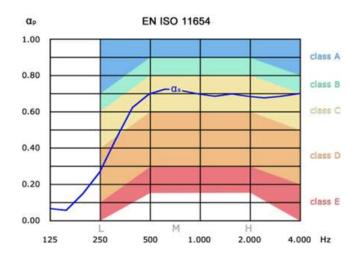
*Nel calcolo di A si deve tenere conto dell'effetto di persone e arredi

Descrittori acustici

coefficiente di assorbimento acustico ponderato α_w (ISO 11654)

Come confrontare l'acustica dei controsoffitti

L'assorbimento acustico viene misurato tramite il coefficiente di assorbimento acustico alfa (α_w) , il cui valore è compreso tra zero 0 e 1,00, dove zero rappresenta la mancanza assoluta di assorbimento (riflessione totale) e 1,00 rappresenta l'assorbimento totale dei suoni incidenti.


Classe di assorbimento acustico

La norma internazionale ISO 11654 suddivide le prestazioni in termini di assorbimento acustico in cinque classi, dalla $\bf A$ alla $\bf E$. I valori $\bf \alpha_p$ vengono confrontati con una serie di curve di riferimento fisse. L'intervallo tra le curve di riferimento è ampio, per cui le classi di assorbimento forniscono solo un'indicazione approssimativa dell'assorbimento acustico. Molti dei nostri controsoffitti offrono un assorbimento acustico di **classe \bf A**.

Coefficiente di assorbimento acustico ponderato (α_w)

 α_w è calcolato in base alla norma ISO 11654 utilizzando i valori pratici del coefficiente di assorbimento acustico α_p a frequenze standard e confrontando tali valori con una curva di riferimento.

$\alpha_{\mathbf{w}}$	Classe di assorbimento acustico
0,90 - 1,00	A
0,80 - 0,85	В
0,60 - 0,75	С
0,30 - 0,55	D
0,15 – 0,25	E
0,00 - 0,10	Non classificato

Classi di assorbimento acustico secondo ISO 11654

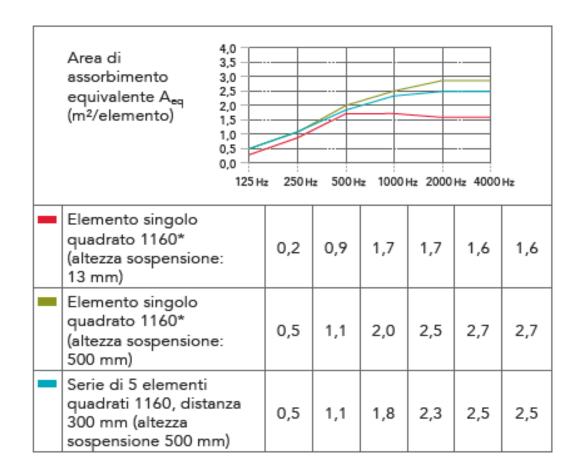
L = basse freguenze

M = frequenze medie

A = alte frequenze

ap = coefficiente pratico di assorbimento acustico

as = coefficiente di assorbimento acustico relativo alla freguenza

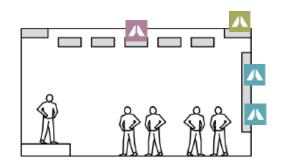

Nel caso dell'esempio il coefficiente di assorbimento acustico ponderato aw = 0.70 (MH) indica che il materiale raggiunge il massimo dell'efficacia nelle frequenze medie e alte.

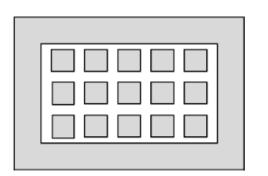
Come confrontare l'acustica dei controsoffitti

Area di assorbimento acustico equivalente (A_{eq})

Le proprietà di assorbimento acustico di isole e baffles vengono quantificate considerando l'area di assorbimento acustico equivalente A_{eq} espressa in m^2 per oggetto. Questa è l'area corrispondente ad un prodotto fittizio in grado di assorbire la stessa quantità di suono dell'isola o del baffle testato, considerando un $\alpha_p = 1,00$ per tutte le frequenze.

Il valore A_{eq} viene misurato in base alla norma ISO 354 il motivo della differenza nel valore di misura risiede nel fatto che un'isola o un baffle assorbono il suono tramite tutta la loro superficie, comprendendo anche i bordi. Non esiste un'area di assorbimento acustico equivalente *ponderata* standardizzata, per cui un modo per confrontare un controsoffitto piano con un soffitto ricoperto di isole e baffles consiste nel calcolare la durata del riverbero per ogni ambiente e situazione.

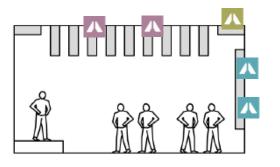


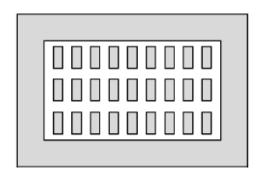

Soluzioni acustiche in fase di progetto

Ottimizzazione del posizionamento materiale fonoassorbente negli ambienti per il parlato

UNI 11532:2020 (Appendice B)

Distribuzione delle superfici di assorbimento acustico per ambienti di piccole e medie dimensioni

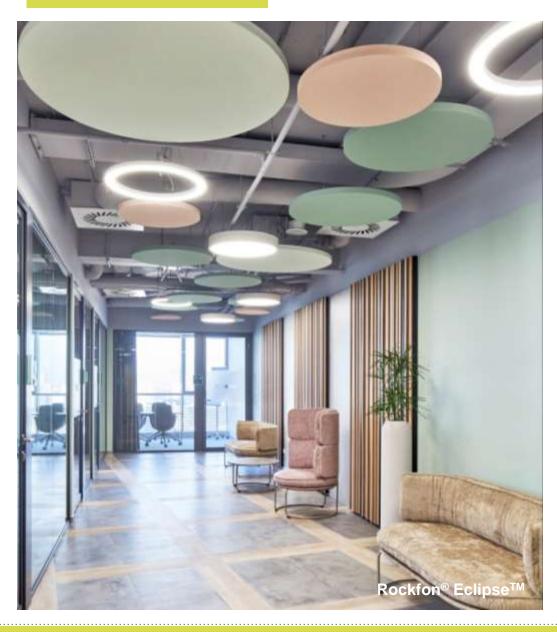



Soluzioni a soffitto:

- Rockfon Eclipse Island
 Isole
- Rockfon Blanka
 Pannelli modulari

Soluzioni murali:

Rockfon Eclipse Walls
Pannelli Murali


Soluzioni a soffitto:

- Rockfon Contour
 Baffles
- Rockfon Blanka
 Pannelli modulari

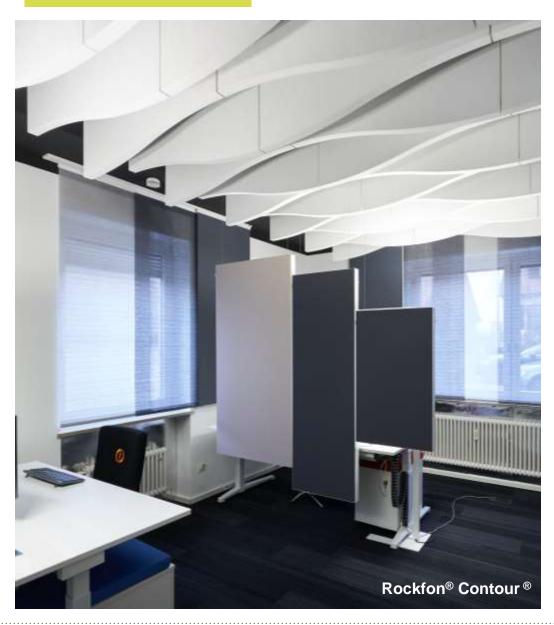
Soluzioni murali:

Rockfon Eclipse Walls
Pannelli Murali

Isole acustiche

Acustica:

Ottimo Assorbimento acustico espresso in A_{eq}


Design:

- Isole acustiche senza cornice, innovative ed eleganti, superficie colorata, liscia e opaca
- Disponibili in diverse forme e colori
- Veloci e facili da installare, possono essere installate come elemento supplementare, oppure dove non è possibile installare un controsoffitto tradizionale
- Perfetto per ambienti in cui si vuole sfruttare la massa termica, la superficie superiore riflette perfettamente la luce ed il calore
- Cradle to Cradle Certified[®]

Ing. Laura Giorgia Sorano

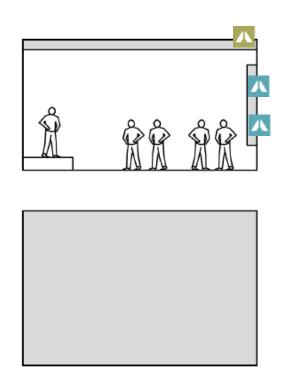
Baffle acustici

Acustica:

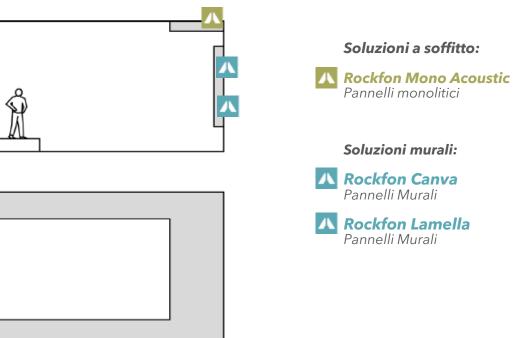
Ottimo Assorbimento acustico espresso in A_{eq}

Design:

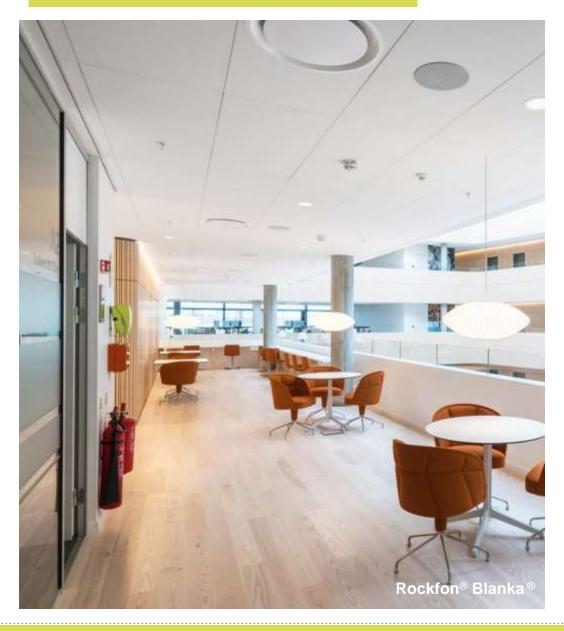
- Baffles acustici, senza cornice, esteticamente superiori
- Installazione molto facile e veloce
- Crea una forte identità al tuo soffitto, usando forme ondulate e nuovi layout, sempre più creativi
- Sono ideali per aumentare le prestazioni acustiche in quelle aree che sfruttano la massa termica o dove vi è necessità di un frequente e agevole accesso agli impianti.
- Utilizzato da solo o in combinazione con un controsoffitto esistente per migliorare l'assorbimento acustico.



Soluzioni acustiche in fase di progetto


Ottimizzazione del posizionamento materiale fonoassorbente negli ambienti per il parlato

UNI 11532:2020 (Appendice B)


Distribuzione delle superfici di assorbimento acustico per ambienti di piccole e medie dimensioni

Controsoffitto modulare

Acustica:

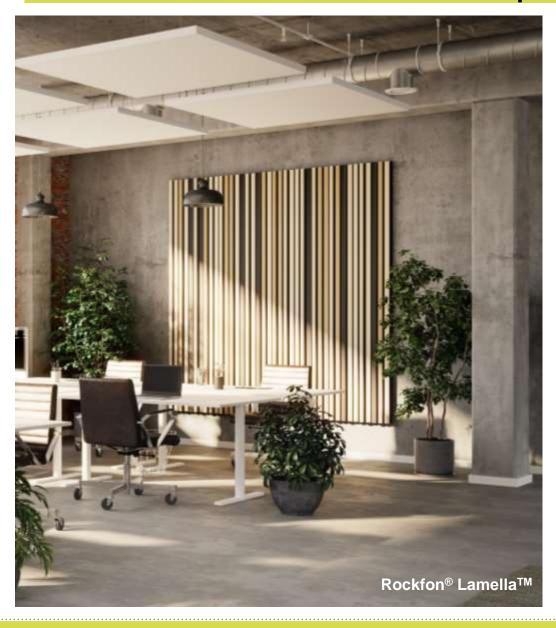
Assorbimento acustico di classe A

Design:

- Superficie bianchissima, liscia e matt per una riflessione e una diffusione della luce ottima.
- Ottimo assorbimento acustico
- Pannelli multidirezionali per una messa in opera facile e veloce
- Resistenza alla polvere e alle manipolazioni per una perfetta tenuta nel tempo dell'aspetto estetico
- Cradle to Cradle Certified[®]

Controsoffitto monolitico

Acustica:


Assorbimento acustico di classe A

Design:

- Completa libertà di progettazione.
- Una soluzione acustica unica e flessibile.
- Curva la superficie del tuo pannello acustico fino a un raggio di 1500 mm.
- Integrazione a soffitto e a parete
- Può essere installato inclinato, piatto o curvo tramite una struttura di sospensione oppure può essere incollato direttamente.
- Cradle to Cradle Certified[®]

Pannello acustico modulare a parete

Acustica:

Assorbimento acustico di classe A

Design:

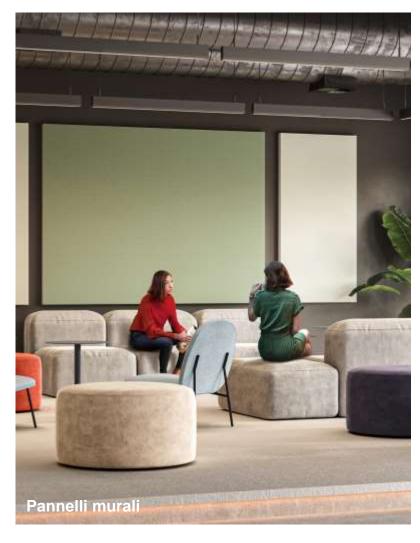
Lunghezza 2474mm

Scelte di larghezza/profondità per ogni finitura

• 34 x 30mm

- 39 x 21mm
- 44 x 12mm

Finiture:



Pannello fonoassorbente

Acustica:

Assorbimento acustico di classe A

Ing. Laura Giorgia Sorano

Pannello fonoassorbente

Acustica:

Assorbimento acustico di classe A

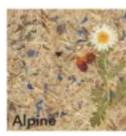
Design:

Spessore di 40 mm

Opzioni disponibili per larghezza/lunghezza:

1160 x 1160mm

1160 x 1760mm


Finiture:

Ing. Laura Giorgia Sorano

CONTATTI

Ing. Laura Giorgia Sorano

Email: laura.giorgia.sorano@rockfon.com

Tel: 3423323134

Ing. Matteo De Somma

Email: matteo.desomma@rockfon.com

Tel: 3450606118

Grazie per l'attenzione