

PRODOTTI CERTIFICATI CE, CAM E BREVETTATI PER L'ISOLAMENTO ACUSTICO E TERMICO A BASSO SPESSORE E RICICLABILI

Geom. Piergiorgio Sutto – Isosystem srl

Diritti d'autore: la presentazione è proprietà intellettuale dell'autore e/o della società da esso rappresentata. Nessuna parte può essere riprodotta senza l'autorizzazione dell'autore.

1990: Attività di commercializzazione

1997: Inizia la produzione

2004: Produzione eps

isosystem gamma prodotti acustici e termici

RICERCA SVILUPPO E CERTIFICAZIONI

- Prodotti accoppiati con cartongesso (acustici e termici)
- Produzione Isosystem
- Prodotti accoppiati

Certificazione prodotti

Controlli in condizioni standard, tramite dati statistici applicati a tutta la produzione

I prodotti Isosystem sono sviluppati rispettando i Criteri Ambientali Minimi previsti dal Decreto del 23 Giugno 2022

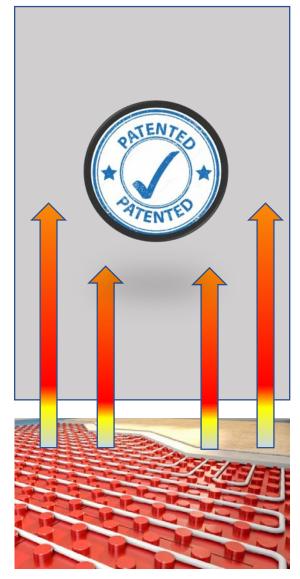
VVCP1 Reazione al fuoco Bs1d0

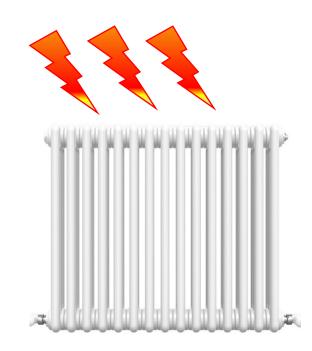
VVCP 4 Controllo prestazioni materiali

Certificazioni necessarie per la partecipazione ad appalti pubblici e PNRR

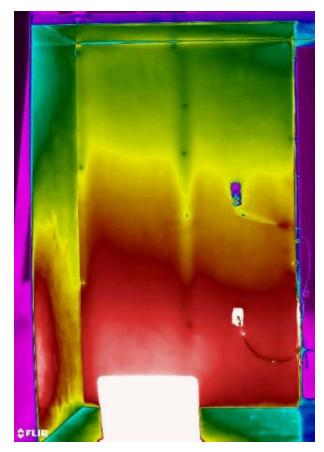
COMFORT E BENESSERE ABITATIVO

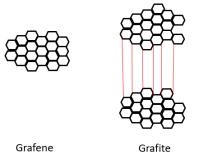
Condizione di benessere che si crea all'interno di un ambiente in funzione di 4 parametri:


- Temperatura
- Qualità dell'aria
- Acustica
- Luminosità

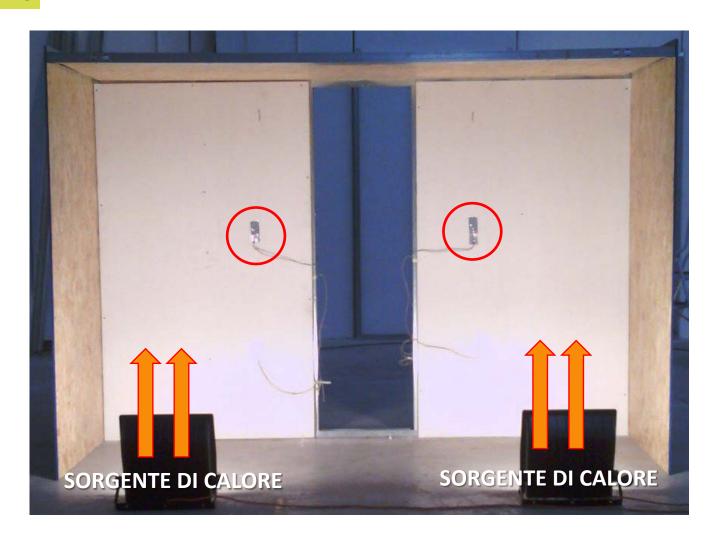

Temperatura

Non comprende solo il concetto di protezione ma anche il modo in cui i materiali utilizzati riescono a mantenere la temperatura impostata

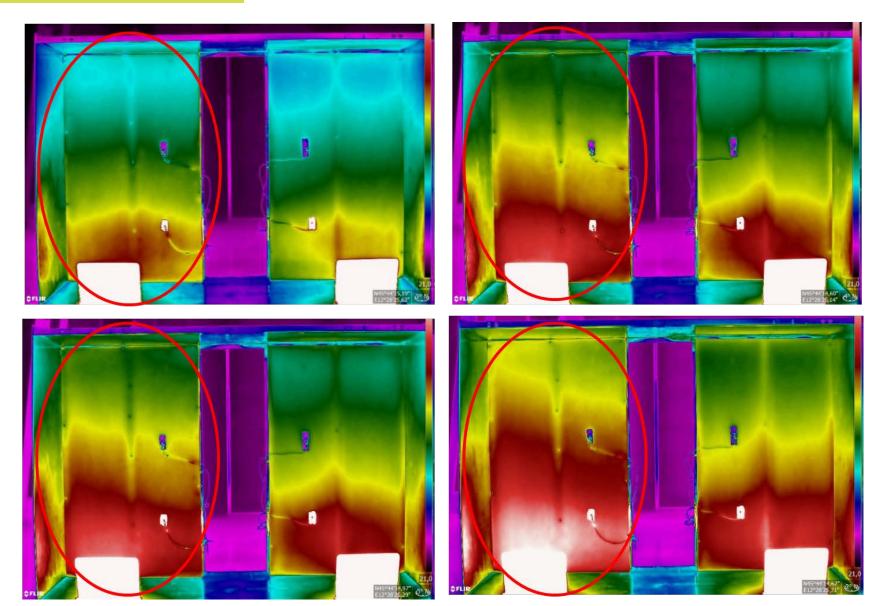



CALORE: INNOVAZIONE E STUDIO

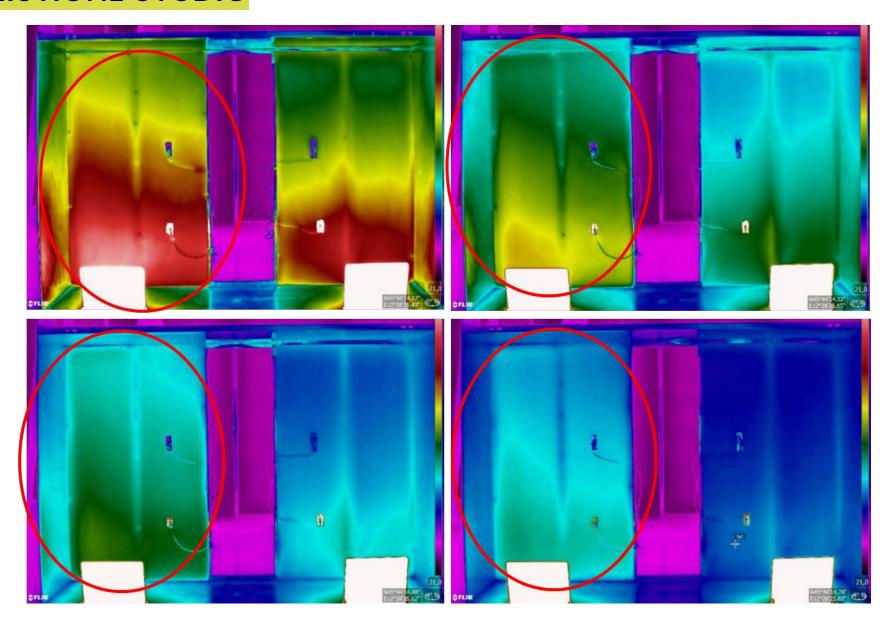
Dissipazione calore: distribuzione omogenea del calore lungo la superficie



CARATTERISTICHE STUDIO



Termocamera per rilevare la variazione di temperatura lungo le superfici


CARATTERISTICHE STUDIO

CARATTERISTICHE STUDIO

COMFORT E BENESSERE ABITATIVO

Condizione di benessere che si crea all'interno di un ambiente in funzione di 4 parametri:

- Temperatura
- Qualità dell'aria
- Acustica
- Luminosità

Acustica

- Sotto massetto
- Sistemi a secco per pavimenti
- Sotto parquet
- Contro pareti e pareti
- Soffitti e contro soffitti

PANNELLI FONOISOLANTI E FONOASSORBENTI PER INTERCAPEDINE

La presenza di due pannelli in lana minerale ad alta densità con interposta una massa plastomerica 7,5 kg/mq lo rende un pannello fonoisolante e fonoassorbente

Prova di laboratorio: Rw= 54 dB Prova di cantiere: R'w= 58 dB

Prova di laboratorio singolo pannello: Rw= 30dB

La presenza della fibra in poliestere proveniente da riciclo PET, lo rende un materiale fonoassorbente

Abbattimento acustico: Rw= 54 dB

Prova di laboratorio: $\alpha_s = 0.9$

CONGLOMERATI IN PUR PER ISOLAMENTO SOTTOMASSETTO

Combinazione di materiali come agglomerati in PUR e membrana del tipo SBS (-15°) e TNT da 50g/mq

Hanno un comportamento elasto-viscoso, pertanto non temono i carichi concentrati perché la loro resistenza è di tipo meccanico

Fittissima reticolazione del materiale

CP2 come resistenza allo schiacciamento e prova di Creep 10 anni < 1dB per qualsiasi carico applicabile

Acustic Pur Mix

Classe di reazione al fuoco Bfl-s1

Cimosa di sormonto adesiva

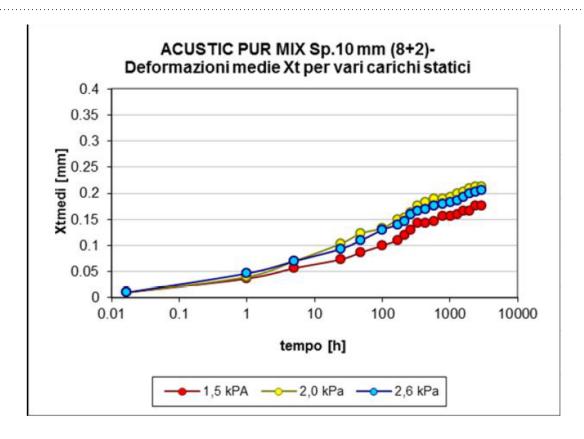


Grafico 5: Risultati prova creep su ACUSTIC PUR MIX sp.10 mm (8+2) – X_t medi per ogni carico statico

Carico sottoposto 1,5 -2,0-2,6 kPa

Rigidità dinamica: S'=S't UNI EN 29052-1 MN/mc= 26

Abbattimento acustico **\Delta**Ln,w= 39 dB

Prova di cantiere

- 1. Lastra in cartongesso
- 2. Lana di roccia 40 mm
- 3. Solaio in legno lamellare 220 mm
- 4. Alleggerito sp. 90 mm
- 5. Acustic Pur Mix sp. 10 mm
- 6. Massetto sabbia e cemento sp. 60 mm
- 7. Acustic Fiber sp. 2 mm
- 8. Pavimento in legno sp. 12 mm

L'nw= 49 dB

Frequenz a Hz	L'n dB	
100	48.2	
125	52.0	
160	50.1	
200	49.5	
250	0 50.4	
315	51.5	
400	48.5	
500	50.4	
630	52.9	
800	52.0	
1000	49.6	
1250	44.0	
1600	40.5	
2000	39.8	
2500	39.0	
3150	33.9	

Curva di riferimento UNI EN ISO 717-2
Livello di calpestio normalizzato

Valutazione secondo la UNI EN ISO 16283-2

 $L'_{n,w}$ (C_I) = 49.0 (-3) dB

Valutazione basata su risultati di misurazioni in opera ottenuti mediante un metodo tecnico progettuale

CONGLOMERATI PER ISOLAMENTO ACUSTICO SU PARETI E CONTROPARETI

Combinazione di materiali come agglomerati in PUR, gomma vulcanizzata e cartongesso

La loro combinazione aumenta l'isolamento acustico e la loro resistenza è di tipo meccanico

Conferiscono struttura al sistema e possono esser incollati direttamente alla muratura

B s1 d0

Gess Fon Pur Mix

LAB Nº 0021 L

Prova di laboratorio singolo pannello

Rw= 36dB

Condizioni ambientali:

GIORDANO

Environmental conditions:

		Camera emittente Source room	Camera ricevente Receiving room
p*	[Pa]	101400 ± 50	101400 ± 50
t*	[°C]	27 ± 1	27 ± 1
RH*	[%]	51 ± 5	50 ± 5

- (*) p = pressione atmosferica/Atmospheric pressure
 - t = temperatura media/Average temperature
 - RH = umidità relativa media/Average relative humidity

Superficie utile di misura dell'oggetto:

Item effective measuring surface:

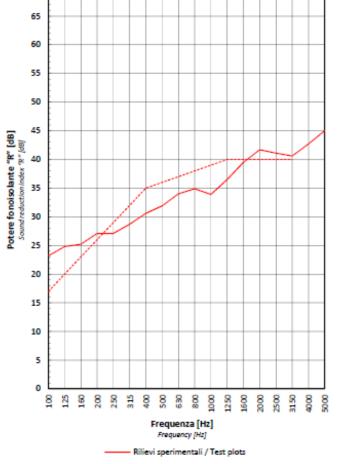
1.88 m²

Volume delle camere di prova:

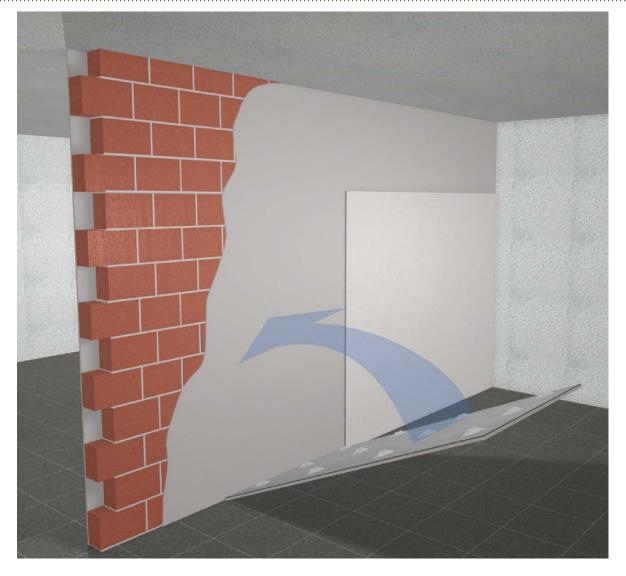
Volume of test rooms:

 $V_s = 98.6 \, \text{m}^3$

 $V = 86.2 \, \text{m}^3$


Indice di valutazione del potere fonoisolante e termini di correzione:

Weighted sound reduction index and adaptation


$$R_w$$
 (C, C_{tr}) = 36 (-1, -4) dB**

(**) indice di valutazione del potere fonoisolante "R_" elaborato procedendo a passi di 0,1 dB e sua incertezza di misura "U(R_w)": weighted sound reduction index "R_w" measured in steps of 0.1 dB and its uncertainty of measurement "U(R_)":

 $R_w = (36,3 \pm 0,4) dB$ $R_w + C = (35,0 \pm 0,5) dB$ $R_w + C_{tr} = (32,5 \pm 0,8) dB$

Curva di riferimento / Reference curve

Gess Fon Gum Plus

EPDM accoppiato con cartongesso

Isolamento acustico a basso spessore

Incollato direttamente su parete

Rw= 34 dB

B s1 d0

B s1 d0

Rw= 34 dB

Gess Fon Gum

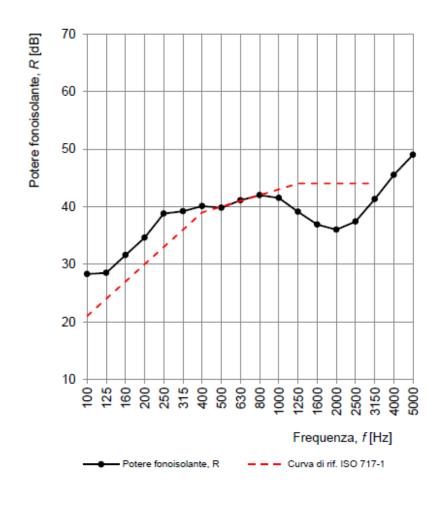
CONGLOMERATI IN GOMMA E GESSO FIBRA PER ISOLAMENTO ACUSTICO A SECCO

Combinazione di materiali come agglomerati in gomma vulcanizzata e gesso fibra

La combinazione di gomma e zolfo per riscaldamento crea un materiale resistente, flessibile ed elastico, che unita al gesso fibra costituisce un ottimo sistema a secco per pavimenti

Ottima resistenza all'usura e ottime caratteristiche fisiche

Materiali fonoisolanti e antivibranti



Top Rubber Plus

Prova di laboratorio Top Rubber Plus

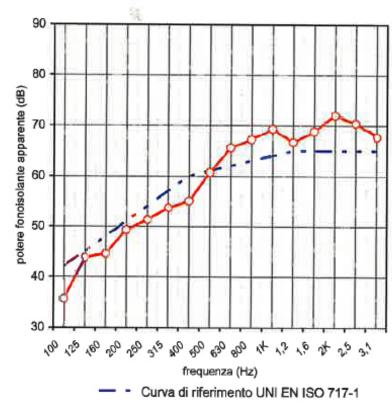
Rw = 40 dB

Frequenza	R
f	Un terzo
	d'ottava
[Hz]	[dB]
100	28.3
125	28.5
160	31.6
200	34.6
250	38.8
315	39.2
400	40.1
500	39.8
630	41.1
800	42.0
1000	41.5
1250	39.1
1600	36.9
2000	36.0
2500	37.4
3150	41.3
4000	45.5
5000	49.0

Valutazione secondo la ISO 717-1:

 $R_{\rm w}$ (C;C_{tr}) = 40 (-2;-2) dB

Valutazione basata su risultati di misurazioni di laboratorio ottenuti mediante un metodo tecnico: $C_{100-5000} = -1 \text{ dB}$


 $C_{\text{tr.}100-5000} = -2 \text{ dB}$

Prova di cantiere

- 1. Struttura in legno
- 2. Cappa collaborante
- 3. TOP RUBBER PLUS
- 4. Pannello radiante a basso sp.
- 5. Pavimentazione in legno
- 6. Controsoffitto pendinato in cartongesso

R'w = 61 dB

Frequenza Hz	R' dB
100	35.6
125	43.8
160	44.6
200	49.3
250	51.3
315	53.6
400	55.0
500	60.7
630	65.6
800	67.2
1000	69.3
1250	66.7
1600	68.8
2000	72.0
2500	70.4
315 0	67.7

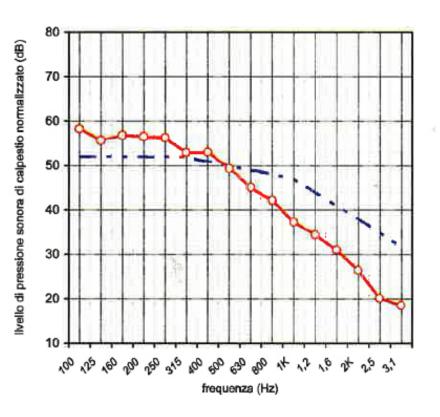
Potere fonoisolante apparente

Valutazione secondo la UNI EN ISO 16283-1

 $R'_{,w}(C;C_{tr}) = 61.0$ (-2; -8) dB

Valutazione basata su risultati di misurazioni in opera ottenuti mediante un metodo tecnico progettuale

Nº del resoconto di prova: 373/2019-02 Data: 02/12/2019 Nome dell'istituto di prova: dBAcustica engineering S.r.l.


Firma: Arch Maurizio Cossar

Prova di cantiere

- 1. Struttura in legno
- 2. Cappa collaborante
- 3. TOP RUBBER PLUS
- 4. Pannello radiante a basso sp.
- 5. Pavimentazione in legno
- 6. Controsoffitto pendinato in cartongesso

L'nw= 50 dB

	v
Frequenz a Hz	L'n dB
100	58.3
125	55.7
160	56.8
200	56.5
250	56.3
315	53.0
400	53.1
500	49.4
630	45.2
800	42.2
1000	37.3
1250	34.5
1600	31.1
2000	26.5
2500	20.2
3150	18.6

Curva di riferimento UNI EN ISO 717-2
Livello di calpestio normalizzato

Valutazione secondo la UNI EN ISO 16283-2

 $L'_{n,w}(C_i) = 50.0$

(0) dB

Valutazione basata su risultati di misurazioni in opera ottenuti mediante un metodo tecnico progettuale

N° del resoconto di prova: 373/2019-03 Data: 02/12/2019 Nome dell'istituto di prova: dBAcustica engineering S.r.i.

Firma: Arch Maurizio Cossar

SISTEMI ISOLANTI PER RUMORI DA CALPESTIO SOTTO PARQUET, SOTTO CERAMICA, LINOLEUM E PAVIMENTI RESILIENTI» MOQUETTE»

∆Ln,w= 24 dB

Reazione al fuoco= B2

Isorubber bio

Isorubber bio

CONTATTI

Dott.ssa Irene Scarpa

Email: <u>irene.scarpa@isosystem.it</u>

Tel: 347 5007122

Grazie per l'attenzione