

Soluzioni d'isolamento per comfort abitativo e risparmio energetico

Ing. Leonardo Gianzi – Ediltec Insulation S.P.A.

Diritti d'autore: la presentazione è proprietà intellettuale dell'autore e/o della società da esso rappresentata. Nessuna parte può essere riprodotta senza l'autorizzazione dell'autore.

Presentazione Aziendale

Leader nella produzione di pannelli in poliuretano

Anima commerciale di un gruppo di aziende attive nel campo dell'isolamento termico.

L'EPBD 4

Direttiva 2024/1275/UE EPBD4

Edifici residenziali:

Riduzione del16% entro il 2030 e -20%/-22% entro il 2035; almeno il 55% della riduzione dovrà coinvolgere il 43% degli immobili con le prestazioni peggiori;

Edifici non residenziali:

Riduzione del 16% nella quota dei consumi entro il 2030 e -26% entro il 2033;

Edifici nuovi a emissioni zero:

dal 2030 tutti gli edifici di nuova costruzione dovranno essere NZEB; dal 2028 per P.A.

Verso un economia verde partendo dall'edilizia

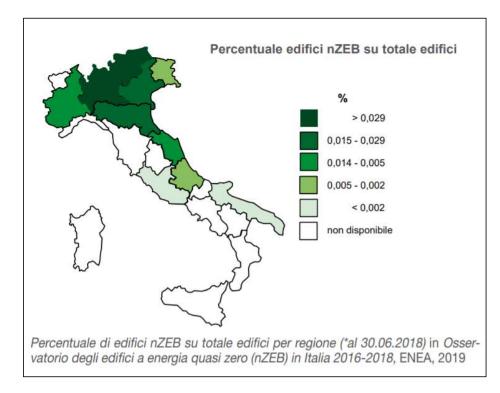
Direttiva 2024/1275/UE EPBD4

Settore idealmente decarbonizzato entro il 2050

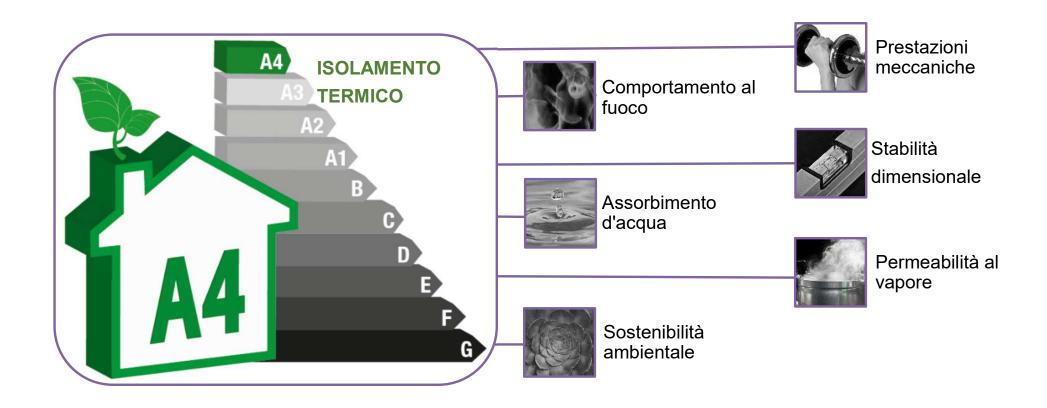
- Estensione vita prodotti
- Valorizzazione scarti
- Sharing economy
- Materie prime riciclate
- Fonti energia rinnovabili

Edifici NZEB in Italia

Il Dlgs 192/2005 + modifiche e integrazioni fino al Dlgs 48/2020, dispone:


"A partire dal 31 dicembre 2018, gli edifici di nuova costruzione occupati da pubbliche amministrazioni e di proprietà di queste ultime, ivi compresi gli edifici scolastici, devono essere edifici a energia quasi zero.

Dal 1° gennaio 2021 la predetta disposizione è estesa a tutti gli edifici di nuova costruzione."


In particolare, la EPBD prevede:

- la costruzione di edifici a zero emissioni dal 2028, dal 2026 nel caso di edifici pubblici;
- dotazione di tecnologie solari per tutti i nuovi edifici entro il 2028, ove tecnicamente idoneo ed economicamente fattibile, mentre gli edifici residenziali in fase di ristrutturazione hanno tempo fino al 2032 per conformarsi;
- raggiungimento almeno della classe di prestazione energetica E entro il 2030 e D entro il 2033 per gli edifici residenziali;
- stesse classi rispettivamente entro il 2027 e il 2030 (la Commissione ha proposto F ed E) per edifici non residenziali e pubblici.

nZEB = near zero energy buildings

Principali caratteristiche e prestazioni

Conducibilità termica λ_D

Range di valori di conducibilità termica dichiarata in funzione della tipologia di prodotto

Conducibilità termica dichiarata λ_D, 10°C W/mK

Pannelli in poliuretano

Tutti gli spessori

con rivestimenti impermeabili:

(Alluminio millesimale, rivestimenti multistrato 0,022 gastight)

Pannelli in poliuretano
con rivestimenti permeabili:
(Carta, cartoni, velo di vetro, velo di vetro bitumato, ecc.)

Fino a 70 mm
Da 80 a 90 mm
mm

0,027
0,026
0,025

Spessori da 20 a 240 mm Lastre in polistirene estruso XPS

0,031 - 0,035

Il valore di λ_D è comprensivo delle correzioni statistiche (90/90: 90% della produzione con il 90% di confidenza statistica) e della maggiorazione dovuta all'invecchiamento (valore medio per 25 anni di esercizio)

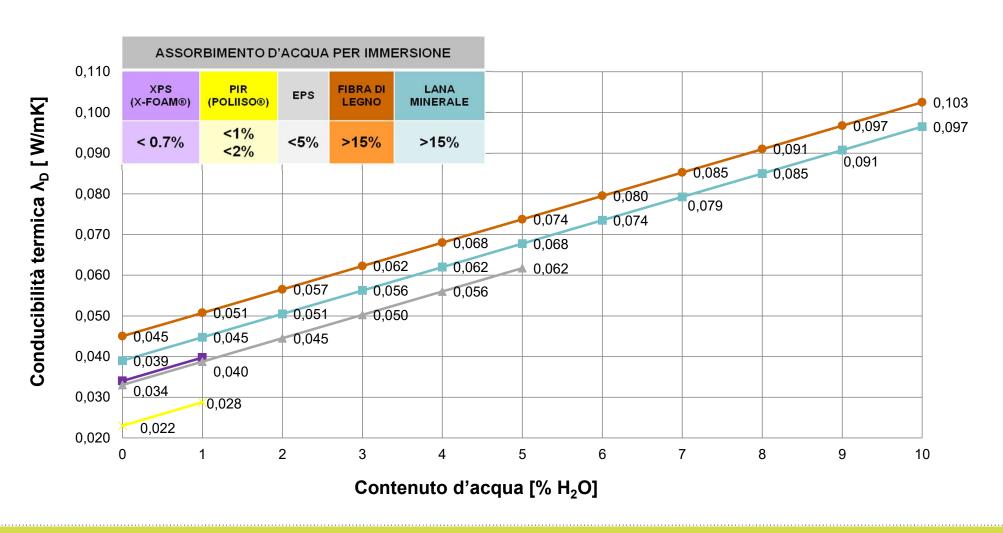
Resistenza alla compressione

- I pannelli in XPS e PIR sono pedonabili per le normali attività di cantiere
- Offrono prestazioni meccaniche adeguate a tutti i normali impieghi in edilizia (solai, pavimentazioni industriali, coperture carrabili, ecc.)

Range di valori di Resistenza alla Compressione			
Prodotto	10% di schiacciamento CS(10/Y)	2% di schiacciamento CC(2/1,5/50)	
Pannelli in poliuretano PU Poliiso	150 – 200 kPa	30 – 70 kPa	
Lastre in polistirene estruso XPS X-Foam	300 – 700 kPa	130 – 250 kPa	

Reazione al fuoco

- Nei materiali isolanti sottoposti a marcatura CE, la Reazione al fuoco viene valutata con il sistema delle Euroclassi (da A1 fino ad F).
- Prestazioni e caratteristiche dimensionate in funzione dell'applicazione prevista.


Prodotti	Euroclasse
Pannelli in poliuretano con rivestimenti organici	F
Pannelli in poliuretano con rivestimenti inorganici	E
POLIISO FB, GIBITEC PLUS	B s1 d0
Lastre in polistirene estruso XPS	E

Assorbimento all'acqua

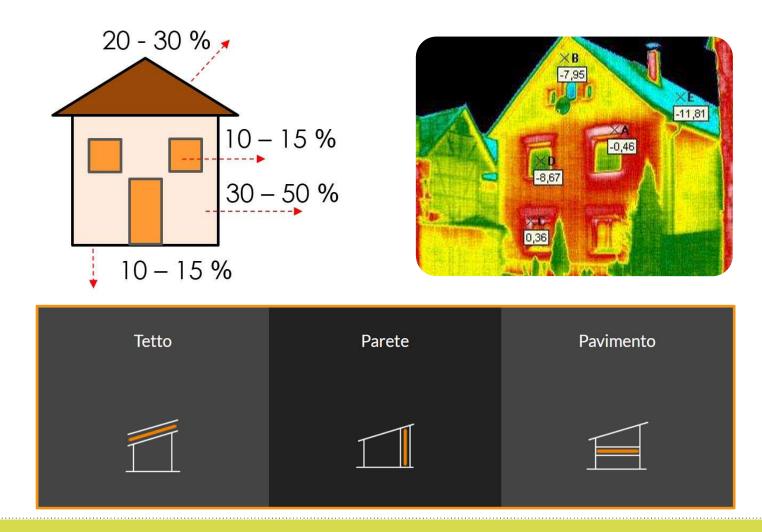
- I pannelli in **XPS** e **PU** hanno una struttura a celle chiuse.
- Non assorbono acqua se non in scarsissime quantità

Prodotti	Assorbimento d'acqua per immersione totale per 28 gg [EN 12087]
POLIISO con rivestimenti permeabili (velovetro)	< 2% / 1%
POLIISO con rivestimenti impermeabili (rivestimenti con alluminio)	< 1%
X-FOAM lastre in polistirene estruso XPS	≤ 0,7 %

Assorbimento all'acqua

Assorbimento all'acqua

Sostenibilità ambientale - Criteri Ambientali Minimi (CAM)


POLIISO®

Isolamento degli edifici

Isolamento delle coperture

- Tetto caldo o tetto rovescio
- Coperture piane, pavimentate, a giardino, ecc.
- Coperture con manto impermeabile, bituminoso o sintetico
- Coperture a falde ventilate, microventilate e non ventilate

Isolamento delle coperture – Tetto caldo

Lo strato isolante è posto al di sotto del manto impermeabile e sopra la barriera al vapore, se presente

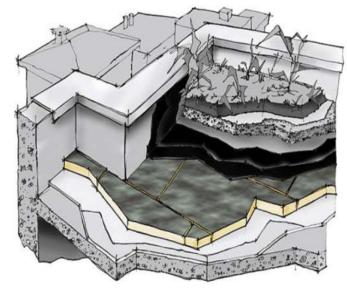
In presenza di una barriera al vapore la sua resistenza al passaggio del vapore deve essere superiore a quella del manto impermeabile

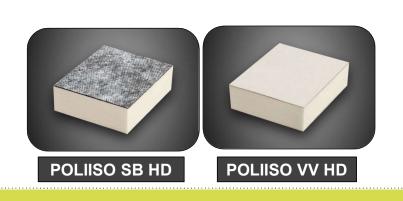
Il manto impermeabile può essere lasciato a vista o si possono realizzare coperture a terrazza, pedonabili, a giardino, ecc.

Isolamento delle coperture – Tetto caldo ventilato

Stratigrafia:

- 1. Soletta
- 2. Barriera al vapore
- 3. POLIISO SB sp. 120 mm
- 4. Membrana bituminosa
- 5. Listelli in legno
- 6. Tegole o coppi

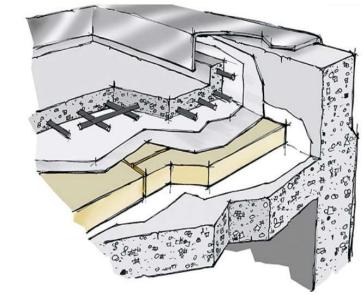

DELLA STRUTTURA SPESSORE [m] 0,36 **TRASMITTANZA** [W/m²K] 0,20 **TERMICA U** RESISTENZA $[m^2K/W]$ 5,00 **TERMICA R TRASMITTANZA** TERMICA PERIODICA [W/m²K] 0.02 **SFASAMENTO** [h] 14 h 15' **CONDENSA INTERSTIZIALE** assente (Glaser)

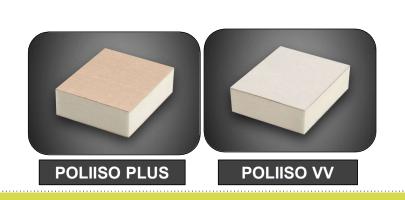

COMPORTAMENTO TERMICO E DINAMICO

Isolamento delle coperture – Tetto caldo giardino

Stratigrafia:

- 1. Terreno vegetale
- 2. Strato drenante
- 3. Membrana bit. antiradice
- 4. POLIISO SB HD 120 mm
- 5. Barriera al vapore
- 6. Solaio in CA


DELLA STRUTTURA			
SPESSORE	[m]	0,42	
TRASMITTANZA TERMICA U	[W/m ² K]	0,18	
RESISTENZA TERMICA R	[m²K/W]	5,35	
TRASMITTANZA TERMICA PERIODICA Y _{ie}	[W/m²K]	0,03	
SFASAMENTO	[h]	11h 27'	
CONDENSA INTERSTIZIALE (Glaser)		assente	


COMPORTAMENTO TERMICO E DINAMICO

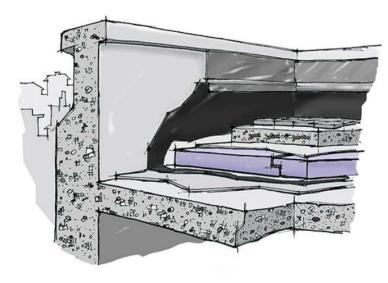
Isolamento delle coperture – Tetto caldo manto sintetico

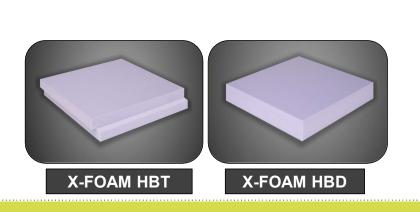
Stratigrafia:

- l. Massetto armato
- 2. Strato separatore
- 3. Membrana sintetica
- 4. POLIISO PLUS 120 mm
- 5. Barriera al vapore
- 6. Solaio in CA

COMPORTAMENTO TERMICO E DINAMICO **DELLA STRUTTURA SPESSORE** [m] 0,39 **TRASMITTANZA** [W/m²K] 0,18 **TERMICA U** RESISTENZA $[m^2K/W]$ 5,55 **TERMICA R TRASMITTANZA** TERMICA PERIODICA [W/m²K] 0,03 **SFASAMENTO** [h] 12 h 17' CONDENSA **INTERSTIZIALE** assente (Glaser)

Isolamento delle coperture – Tetto rovescio

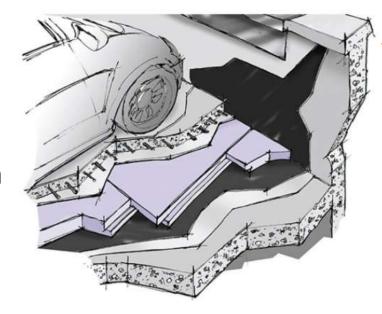

- Lo strato isolante è posto al di sopra della membrana impermeabilizzante;
- 2. Lo strato impermeabile funge da barriera al vapore;
- 3. Lo strato termoisolante protegge la membrana impermeabilizzante da azioni statiche, dinamiche e termiche

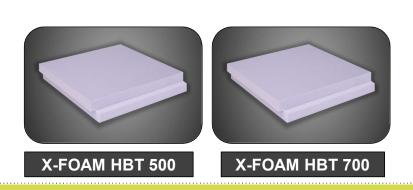


Isolamento delle coperture – Tetto rovescio praticabile

Stratigrafia:

- 1. Rivestimento
- 2. Massetto armato
- 3. Strato separatore
- 4. X-FOAM HBT 140 mm
- 5. Membrana bituminosa
- 6. Solaio in CA




COMPORTAMENTO TERMICO E DINAMICO **DELLA STRUTTURA SPESSORE** [m] 0,41 **TRASMITTANZA** $[W/m^2K]$ 0,20 TERMICA U RESISTENZA $[m^2K/W]$ 4,94 TERMICA R **TRASMITTANZA** TERMICA PERIODICA [W/m²K] 0.03 **SFASAMENTO** [h] 13h 16' **CONDENSA INTERSTIZIALE** assente (Glaser)

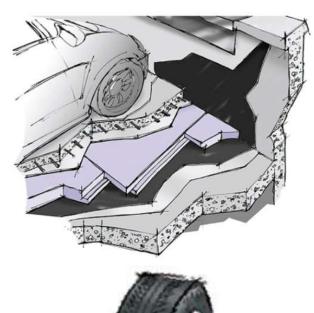
Isolamento delle coperture – Tetto rovescio carrabile

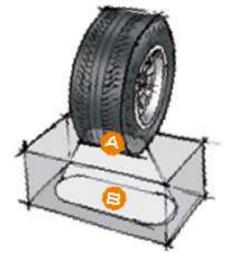
Stratigrafia:

- 1. Rivestimento esterno
- 2. Massetto armato
- 3. Strato separatore
- 4. X-FOAM HBT 500 140 mm
- 5. Membrana bituminosa
- 6. Strato di pendenza
- 7. Solaio in CA

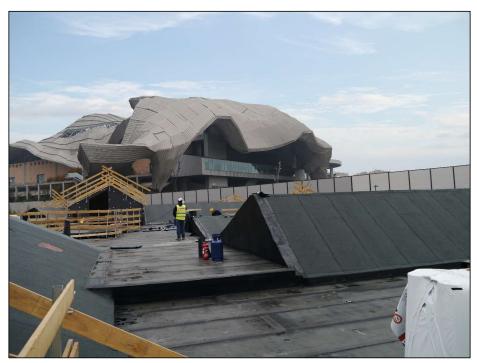
COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA

SPESSORE	[m]	0,41
TRASMITTANZA TERMICA U	[W/m²K]	0,20
RESISTENZA TERMICA R	[m²K/W]	4,94
TRASMITTANZA TERMICA PERIODICA Y _{ie}	[W/m²K]	0,03
SFASAMENTO	[h]	13h 16'
CONDENSA INTERSTIZIALE		assente


(Glaser)

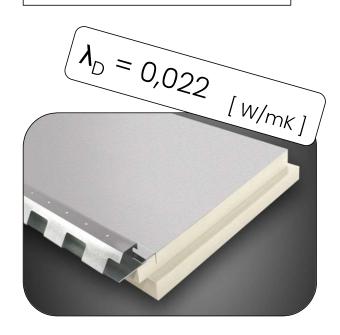

Isolamento delle coperture – Tetto rovescio carrabile

Range di valori di Resistenza alla Compressione


Prodotto	10% di schiacciamento CS(10/Y)	2% di schiacciamento CC(2/1,5/50)
X-FOAM HBT	300 kPa	120 kPa
X-FOAM HBT 500	500 kPa	220 kPa
X-FOAM HBT 700	700 kPa	250 kPa

Lo strato di cemento distribuisce allo strato sottostante il carico secondo un angolo di 45° coinvolgendo perciò una zona di carico sullo strato isolante più ampia indicata con B.

Isolamento delle coperture – Case history


Poliiso FB

Euroclasse B sl d0 Spessore 80 mm λ_D, PU = 0,026 W/mK U, PU = 0,33 W/m²K

Isolamento delle coperture – Sistema tetto

- Creazione della ventilazione e dell'isolamento con un unico prodotto
- 2. Il listello metallico funge da aggancio porta tegole e garantisce una ventilazione sottotegola
- 3. Euroclasse E di reazione al fuoco
- 4. Facilità di posa e rapidità di montaggio
- 5. Passo variabile in funzione del passo tegola
- 6. L'utilizzo di supporti impermeabili offre diversi vantaggi:
- 7. Aumento Resistenza termica
- 8. Protegge da accidentali infiltrazioni d'acqua
- 9. Funge da barriera al vapore $\rightarrow \mu = \infty$

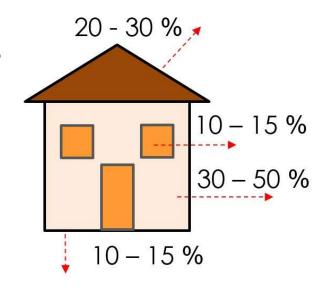
POLIISO® TEGOLA

Isolamento delle coperture – Case history

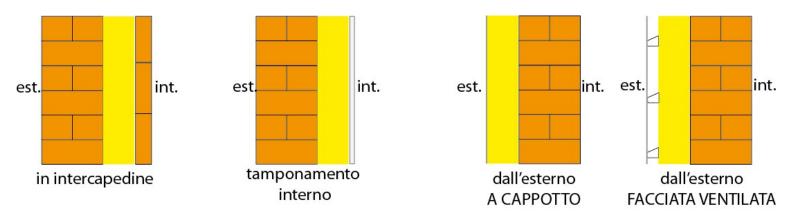
POLIISO® TEGOLA

- 1. Spessore 120 mm
- 2. $\lambda_D = 0.022 \text{ W/mK}$
- 3. $U = 0.183 \text{ W/m}^2\text{K}$

Isolamento delle coperture – Case history


Poliiso PLUS

- 1. pessore 100 mm
- 2. $\lambda_D = 0.022 \text{ W/mK}$
- 3. $U = 0.22 \text{ W/m}^2\text{K}$



Isolamento delle pareti

Le pareti perimetrali sono responsabili di una percentuale importante delle dispersioni termiche degli edifici.

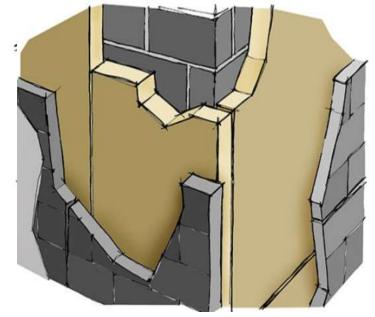
Possibili collocazioni del materiale isolante a parete:

Isolamento delle pareti - intercapedine

Sistema di coibentazione tradizionale Estremamente vantaggioso per fabbricati destinati ad utilizzo continuativo.

Massima durata ed efficienza dell'isolante Innalzamento delle temperature superficiali interne

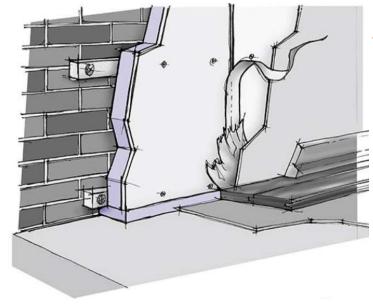
Isolamento: pannelli in Poliuretano espanso rigido con rivestimenti flessibili, multistrato, gas tight

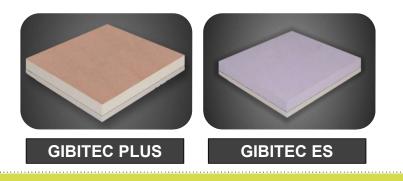

 \rightarrow POLIISO PLUS

Isolamento delle pareti - intercapedine

Stratigrafia:

- 1. Finitura esterna
- 2. Elemento di parete esterna
- 3. POLIISO PLUS sp. 60 mm
- 4. Elemento di parete interno




COMPORTAMENTO TERMICO E DINAMIO DELLA STRUTTURA		
SPESSORE	[m]	0,32
TRASMITTANZA TERMICA U	[W/m²K]	0,29
RESISTENZA TERMICA R	[m ² K/W]	3,42
TRASMITTANZA TERMICA PERIODICA Y _{ie}	[W/m²K]	0,12
SFASAMENTO	[h]	8,58 h
CONDENSA INTERSTIZIALE (Glaser)		assente

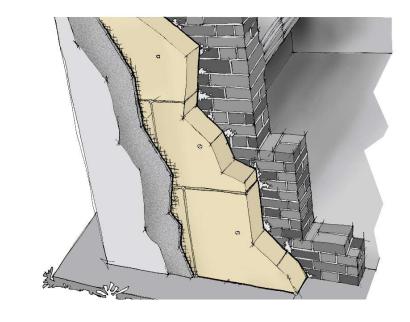
Isolamento delle pareti – isolamento interno

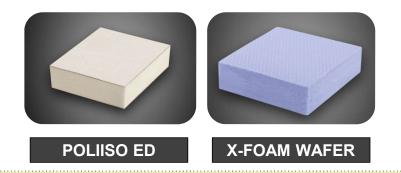
Stratigrafia:

- 1. Parete interna
- 2. Listellatura
- 3. GIBITEC PLUS sp. 80 mm
- 4. Intonaco interno

COMPORTAMENTO TERMICO E DINAMICO **DELLA STRUTTURA SPESSORE** [m] 0,48 **TRASMITTANZA** [W/m²K] 0,22 TERMICA U **RESISTENZA TERMICA** $[m^2K/W]$ 4,53 TRASMITTANZA TERMICA PERIODICA [W/m²K] 0.05 **SFASAMENTO** 10,30 h **CONDENSA** assente INTERSTIZIALE (Glaser)

Isolamento delle pareti – Cappotto esterno


- Il sistema «a cappotto», ETICS, viene utilizzato sia per i nuovi edifici e sia per le ristrutturazioni;
- Leggerezza, spessore contenuto, economie di cantiere per la ridotta incidenza di fissaggi e accessori di finitura del sistema;
- Eliminazione dei ponti termici;
- La posizione interna delle massa delle strutture, permette di sfruttare la loro inerzia termica;
- Intervento che non prevede riduzione superfici interne delle abitazioni.



Isolamento delle pareti – Cappotto esterno

Stratigrafia:

- 1. Muratura
- 2. Collante cementizio
- 3. POLIISO ED sp. 100 mm
- 4. Tasselli da cappotto
- 5. Rasatura armata
- 6. Finitura esterna

DELLA STRUTTURA SPESSORE [m] 0,37 **TRASMITTANZA** $[W/m^2K]$ 0,22 TERMICA U RESISTENZA TERMICA $[m^2K/W]$ 4,51 **TRASMITTANZA** $[W/m^2K]$ TERMICA PERIODICA 0.03 **SFASAMENTO** [h] 11,95 h

CONDENSA

INTERSTIZIALE (Glaser)

COMPORTAMENTO TERMICO E DINAMICO

assente

Isolamento delle pareti – Facciata ventilata

Il sistema facciata ventilata è costituito da:

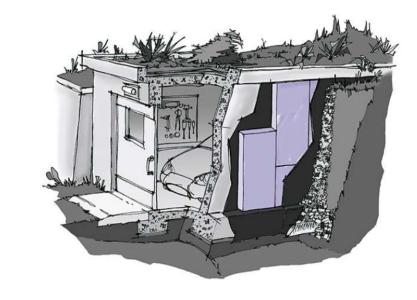
- Cappotto esterno termoisolante continuo ed omogeneo;
- Struttura di supporto per la finitura esterna di riferimento;
- Soluzioni con elevate prestazioni di reazione al fuoco
 - → Euroclasse B s1 d0
- Manutenzione semplice
- Ventilazione che smaltisce il calore da irraggiamento dell'edificio

Isolamento delle pareti – Facciata ventilata

La ventilazione agisce sul comportamento termoigrometrico delle facciate ed i suoi effetti sono:

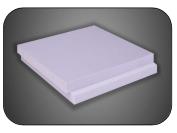
ESTATE

- Attivazione dei ricambi d'aria all'interno dell'intercapedine grazie al moto convettivo
- Espulsione dell'aria riscaldata prima che trasmetta il calore agli ambienti retrostanti
- Materiale di rivestimento meno stressato dall'irraggiamento


INVERNO

- •Smaltimento verso l'esterno del vapore proveniente dagli ambienti riscaldati
- •Attenuazione tracce di umidità visibili in facciata
- •Eliminazione ponti termici

Isolamento delle pareti – Muri controterra


Stratigrafia:

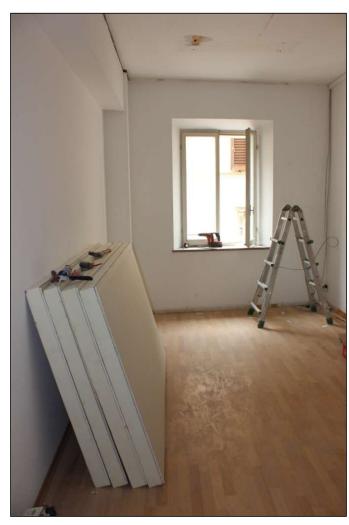
- 1. Muratura
- 2. Impermeabilizzazione
- 3. X-FOAM HBT 120 mm
- 4. Strato impermeabile drenante
- 5. Strato drenante
- 6. Strato filtrante
- 7. Terreno

X-FOAM HBT 500

COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA

SPESSORE	[m]	0,43
TRASMITTANZA TERMICA U	[W/m²K]	0,26
RESISTENZA TERMICA R	[m ² K/W]	3,85
TRASMITTANZA TERMICA PERIODICA Y _{ie}	[W/m²K]	0,02
SFASAMENTO	[h]	11,3 h
CONDENSA INTERSTIZIALE (Glaser)		assente

Isolamento delle pareti – Caso studio cappotto esterno

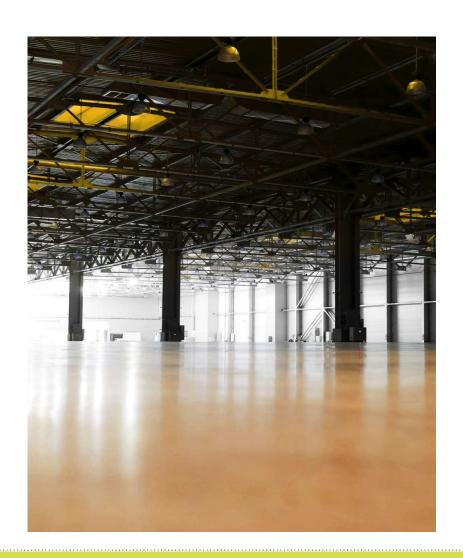

POLIISO ED

Spessore 120 mm $\lambda_{D, PU} = 0.025 \text{ W/mK}$ $U_{PU} = 0.208 \text{ W/m}^2\text{K}$

Isolamento delle pareti – Caso studio isolamento interno

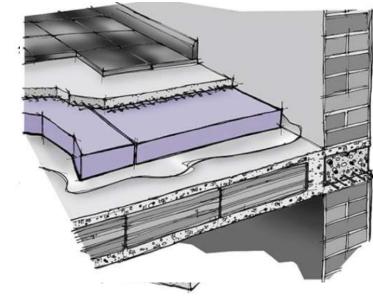
GIBITEC PLUS

Spessore 60+13 mm $\lambda_{D, PU} = 0.022 \text{ W/mK}$ $U_{GIBITEC} = 0.36 \text{ W/m}^2\text{K}$


Isolamento delle pareti – Caso studio intercapedine

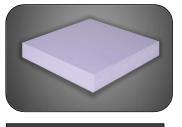
Isolamento a pavimento

Tipologie e caratteristiche:


- Pavimento residenziale
- Pavimenti riscaldati
- Pavimenti industriali
- Sotto platea di fondazione
- Elevate prestazioni isolanti che permettono di utilizzare spessori ridotti
- Elevate prestazioni meccaniche
- Ottenere un risparmio energetico

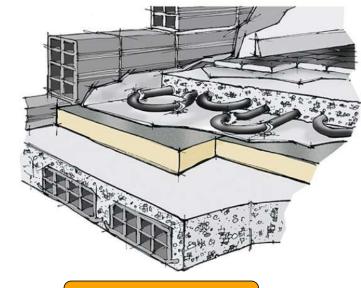
Isolamento a pavimento – Pavimento residenziale

Stratigrafia:


- 1. Solaio in laterocemento
- 2. X-FOAM HBD sp. 30 mm
- 3. Strato separatore
- 4. Massetto
- 5. Pavimentazione

COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA			
255	SPESSORE	[m]	0,33
-	TRASMITTANZA TERMICA U	[W/m²K]	0,80
	RESISTENZA TERMICA R	[m ² K/W]	1,25
	CONDENSA INTERSTIZIALE (Glaser)		assente

POLIISO PLUS



X-FOAM HBD

Isolamento a pavimento - Pavimento riscaldato

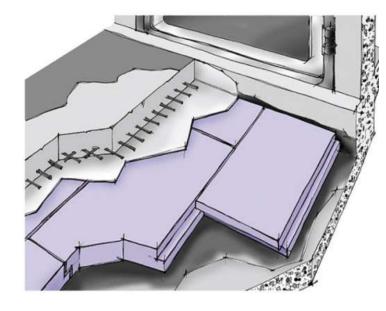
Stratigrafia:

- 1. Solaio
- 2. POLIISO EXTRA sp. 20 mm
- 3. Strato separatore
- 4. Riscaldamento radiante
- 5. Massetto
- 6. Pavimentazione

 $\lambda_{D} = 0.022$ [w/mk]

POLIISO AD

POLIISO EXTRA

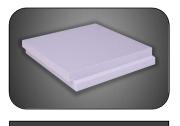

COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA

SPESSORE	[m]	0,32
TRASMITTANZA TERMICA U	[W/m²K]	0,80
RESISTENZA TERMICA R	[m ² K/W]	1,25
CONDENSA INTERSTIZIALE (Glaser)		assente

Isolamento a pavimento – Pavimentazione industriale

Stratigrafia:

- 1. Soletta
- 2. Impermeabilizzazione
- 3. X-FOAM HBT 500 sp.80 mm
- 4. Strato separatore
- 5. Massetto armato
- 6. Rivestimento


COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA

SPESSORE	[m]	0,45

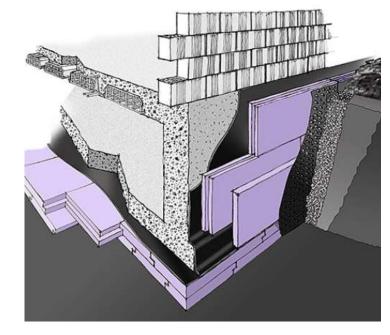
TRASMITTANZA	[W/m ² K]	0.34
TERMICA U	[۷۷/111]	0,34

RESISTENZA	[m ² K/W]	2.06
TERMICA R	[III K/VV]	2,86

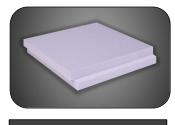

CONDENSA
INTERSTIZIALE assente
(Glaser)

X-FOAM HBT

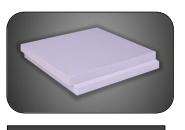
X-FOAM HBT 500



<u>X-FOAM HBT 700</u>


Isolamento a pavimento – Sotto platea di fondazione

Stratigrafia:


- 1. Platea di fondazione
- 2. Impermeabilizzazione
- 3. X-FOAM HBT 700 sp. 100 mm
- 4. Strato impermeabile drenante
- 5. Strato di ghiaia
- 6. Terreno

COMPORTAMENTO TERMICO E DINAMICO DELLA STRUTTURA		
SPESSORE	[m]	0,45
TRASMITTANZA TERMICA U	[W/m²K]	0,34
RESISTENZA TERMICA R	[m ² K/W]	2,86
CONDENSA INTERSTIZIALE (Glaser)		assente

X-FOAM HBT 700

Isolamento a pavimento - Pavimento residenziale

POLIISO PLUS Spessore 100 mm $\lambda_{D, PU} = 0.022 \text{ W/mK}$ $U_{PU} = 0.22 \text{ W/m}^2\text{K}$

CONTATTI

Ing. Leonardo Gianzi

Email: ufficiotecnico@ediltec.com

Tel: 059-2916411

Ufficio Commerciale Via Giardini, 474/M, 41124 Modena www.ediltec.com

Grazie per l'attenzione