

ASSOCIAZIONE NAZIONALE
PER L'ISOLAMENTO TERMICO E ACUSTICO

Ponti termici

NORME DI RIFERIMENTO, REQUISITI MINIMI DI EFFICIENZA ENERGETICA DM 26 GIUGNO 2015 E NOVITÀ IN ARRIVO

Energy Performance Building Directive

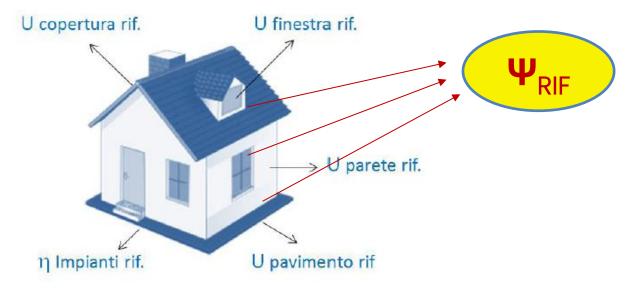
Edizioni/revisioni precedenti della stessa direttiva:


- EPBD 1 Direttiva2002/91/CE -> DLgs 19 agosto 2005, n.192 + relativi decreti attuativi
- EPBD 2 Direttiva2010/31/UE -> Legge 3 agosto 2013, n.90 + relativi decreti attuativi
- EPBD 3 Direttiva2018/844/UE -> DLgs 10 giugno2020, n.48

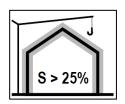
La nuova direttiva EPBD detta anche Direttiva «case green»:

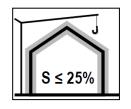
- EPBD 4 in gazzetta ufficiale europea dal 8 maggio 2024

Gli indici di prestazione energetica

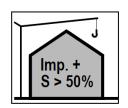

EDIFICIO DI PROGETTO

EDIFICIO DI RIFERIMENTO




Possibili evoluzioni sui requisiti minimi di involucro

Edifici esistenti: Rispetto di U_{limite}



- 1 U_{sezione corrente} < U_{lim,tabella}
- 2 Umedia < U_{lim con valutazione ponti termici}

U_{sezione corrente} < U_{lim,tabella}

Ristrutturazioni importanti di 1º livello: Rispetto di H'_T negli edifici molto finestrati

Rimodulazione tabellata di H'_{T,limite} in funzione della % di superficie finestrata

La verifica della trasmittanza termica U_m

$$U_{\text{m}} = \frac{\sum (A_{\text{op}} \cdot U_{\text{op}}) + \sum (\Psi \cdot L_{\%})}{\sum A_{\text{op}}}$$

- per tipologia strutturale: strutture verticali, orizzontali con flusso di calore ascendente o discendente, componenti finestrati

Nota: i valori di trasmittanza limite si considerano comprensivi dei ponti termici all'interno delle strutture oggetto di riqualificazione e di metà del ponte termico al perimetro della superficie oggetto di riqualificazione (DM 26/6/2015, Appendice B)

Ristrutturazioni importanti di secondo livello- calcolo di U_{lim}

$1 - U_{\text{sezione corrente}} < U_{\text{lim,tabella}}$

Tabella 1- Trasmittanza termica U massima delle strutture opache verticali, verso l'esterno soggette a riqualificazione

Zona climatica	$U (W/m^2K)$		
A e B	0,40		
С	0,36		
D	0,32		
Е	0,28		
F	0,26		

Si calcola la trasmittanza termica limite comprensiva dei ponti termici come:

$$\mathsf{U}_{\mathsf{progetto}} = \frac{\sum_{i} (A_i \cdot U_i) + \sum_{j} \left(\Psi_j \cdot l_j \right)}{\sum_{i} A_i} \leq \mathsf{U}_{\mathsf{limite}} = \frac{\sum_{i} \left(A_i \cdot U_{lim,tab} \right) + \sum_{j} \left(\Psi_{tab} \cdot l_j \right)}{\sum_{i} A_i}$$

dove

- A è l'area di intervento [m²];
- U_{lim} è la trasmittanza limite della sezione corrente che si ricava dalle tabelle 1, 2, 3 e 4 [W/m²K];
- I è la lunghezza del ponte termico [m];
- Ψ_{tab} è il coefficiente lineico di trasmissione riportato nelle tabelle da 5 a 7 [W/mK].

Ulim,tab

La verifica del coefficiente medio globale di scambio termico H'

$$H'_T \le H'_{T,limite}$$

$$H'_{\mathsf{T}} = \frac{\sum (A_{\mathrm{op}} \cdot U_{\mathrm{op}}) + \sum (A_{\mathrm{w}} \cdot U_{\mathrm{w}}) + \sum (\Psi \cdot L_{\%})}{\sum (A_{\mathrm{op}}) + \sum (A_{\mathrm{w}})}$$

	10 (Appendice A) assimo ammissibile del coefficiente globale di so	amhio tar	mico H' [\	M//m²k1			
valore iii	assimo ammissibile del coemciente giobale di sc	Zona climatica					
N. riga	RAPPORTO DI FORMA (S/V)	AeB	С	D	E	F	
1	S/V ≥ 0,7	0,58	0,55	0,53	0,50	0,48	
2	0,7 > S/V ≥ 0,4	0,63	0,60	0,58	0,55	0,53	
3	0,4 > S/V	0,80	0,80	0,80	0,75	0,70	
		Zona climatica					
N. riga	TIPOLOGIA DI INTERVENTO	AeB	С	D	E	F	
4	Ampliamenti e Ristrutturazioni importanti di secondo livello per tutte le tipologie edilizie	0,73	0,70	0,68	0,65	0,62	

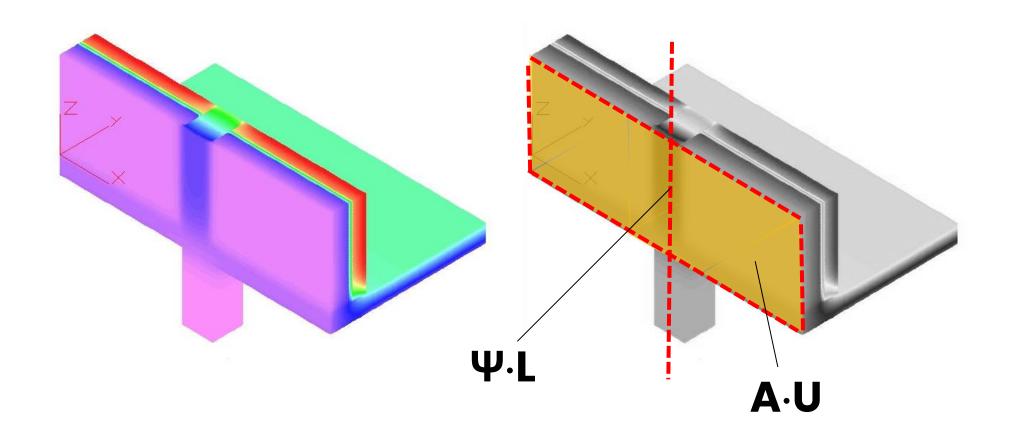
Verifiche igrotermiche

Assenza rischio di muffa

- Assenza rischio di condensazione interstiziale
- Condizioni di calcolo secondo la norma UNI EN ISO 13788

(FAQ 3.11di dicembre 2018)

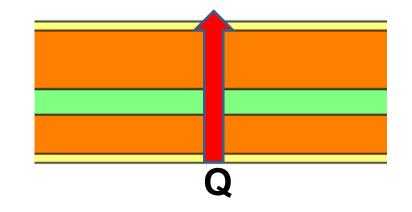
Si intende il rispetto della quantità massima ammissibile e nessun residuo alla fine di un ciclo annuale.


(FAQ 2.24 di Agosto 2016)

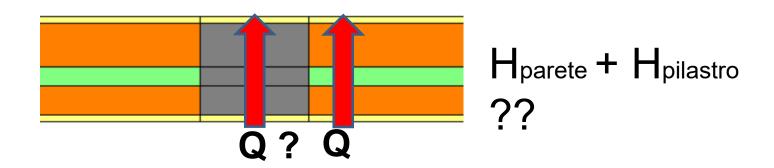
Oppure anche con un'analisi igrotermica dinamica secondo UNI EN 15026).

Verifiche igrotermiche

Nella bozza di decreto, oltre ad integrare le FAQ nel testo (in merito alla quantità di condensa massima accettabile e all'utilizzo di metodi di calcolo più raffinati), la frase riportata sembra indicare che le verifiche di rischio muffa debbano essere eseguite sui ponti termici in tutti i casi, anche negli edifici esistenti.


Come considero i ponti termici?

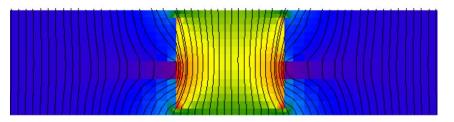
Perché il calcolo ad elementi finiti?


Calcolo del flusso attraverso una parete

$$Q = \underline{AxUx} \Delta T (W)$$
H

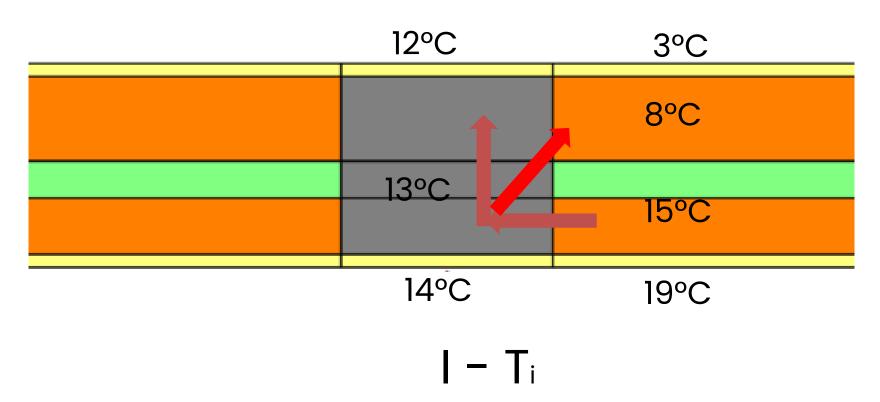
NB. <u>lpotesi</u>: il flusso è monodimensionale e perpendicolare alle facce della parete

Che cosa succede se c'è una discontinuità? Posso ragionare allo stesso modo (come se fossero due diverse pareti affiancate)?

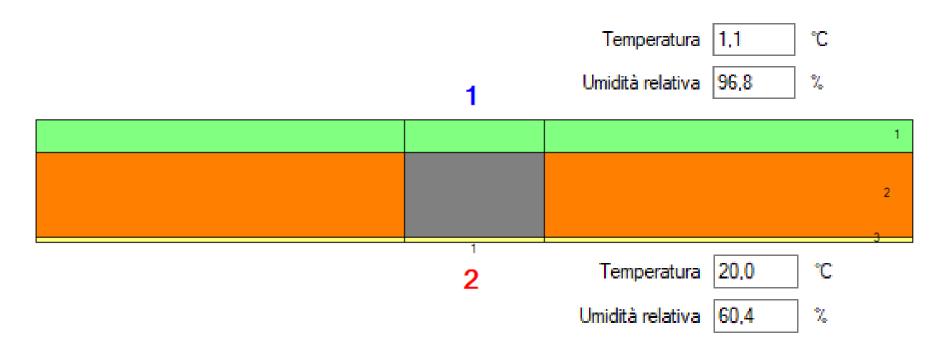

Perché il calcolo ad elementi finiti?

Risultati:

1) Andamento delle temperature



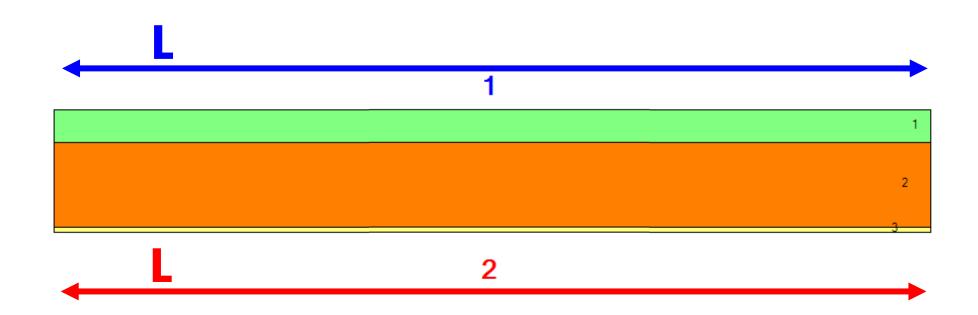
2) Andamento dei flussi



Perché il calcolo ad elementi finiti?

Con l'analisi FEM si riesce a rilevare il flusso aggiuntivo generato dalla discontinuità E – T_e

Dalla FEM alle dispersioni- Significato fisico di ψ


L'analisi agli elementi finiti risponde a questa domanda:

Quanto vale il flusso attraverso il nodo?

Flusso =
$$14,762 [W/m]$$

L2D = Flusso / $\Delta T = 14,762 / (20,0-1,1) = 0,781 [W/mK]$

Dalla FEM alle dispersioni- Significato fisico di ψ

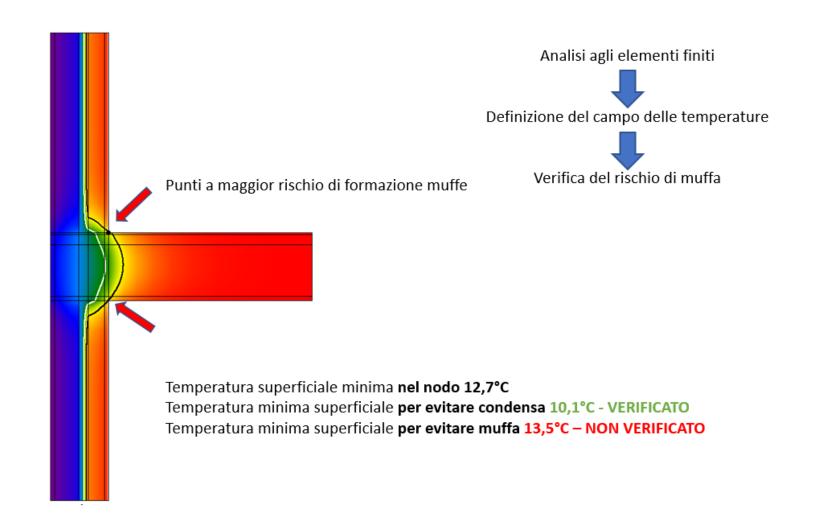
Quanto vale la dispersione in assenza del ponte termico?
Disp. = UxA = Ux(Lx1m) = 0,760 [W/mK]

Dalla FEM alle dispersioni- Significato fisico di ψ

C Quanto pesa energeticamente il pilastro? Per rispondere confrontiamo il caso A e il caso B:

$$\Psi = L2D - Disp. = 0.021 [W/mK]$$
 $\Psi = \Psi i$

Il rischio di formazione di muffa



Fonte: TEP srl

La verifica del rischio di muffa sui ponti termici

Grazie per l'attenzione